SPD 1004 – QM Vibration Testing

Document Author(s):

Jehyuck Shin

karamel_bro@khu.ac.kr

<u>Responsible Engineer(s)</u>:

Seongwhan Lee

swhan@khu.ac.kr

Jungho Lee overthewater@khu.ac.kr

Revision History

Revision	Description	Author	Date
00	Draft Document	Jehyuck Shin	10/22/14
01	Revision Update	Seongwhan Lee	11/01/14
02	Revision Update	Jehyuck Shin	11/20/14
03	Revision Update	Seongwhan Lee	11/27/14
04	Revision Update	Jehyuck Shin	11/30/14
05	Revision Update	Jehyuck Shin	12/13/14
06	Revision Update	Jehyuck Shin	12/27/14
07	Revision Update	Jehyuck Shin	01/12/15
08	Revision Update	Seongwhan Lee	01/14/15
09	Revision Update	Jehyuck Shin	01/14/15

List of Abbreviations and Acronyms

- SIGMA Scientific cubesat with Instruments for Global Magnetic field and rAdiation
- KHUSAT Kyung Hee University SATellite
- KHU Kyung Hee Univeristy
- SSR School of Space Research
- YU York University, Canada
- UNH University of New Hampshire, USA

VT – Virginia Tech, USA

TestPOD - Test Picosatellite Orbital Deployer

UUT – Unit Under Test

- TEPC Tissue Equivalent Proportional Counter
- MAG miniaturized fluxgate MAGnetometer
- IIB Instrument Interface Board
- **OBC** On Board Computer
- **RBF** Remove Before Flight
- **P/N** Part Number
- **QM** Qualifying Model
- FM Flight Model
- **BRF** Body Reference Frame
- LRF Launcher Reference Frame

Special Notes

CAUTION

Note: CAUTION notes identify situations where flight hardware may be damaged without proper attention.

DANGER

Note: DANGER notes identify situations where bodily harm may occur without proper attention.

Table of Contents

- 1. Introduction
 - 1.1 Characteristics of SIGMA
- 2. Equipment for the Vibration Test
 - 2.1 Shaker
 - 2.2 Accelerometer
- 3. Test Procedure
 - 3.1 Test Requirement
 - 3.1.1 Sine Sweep Vibration Test Characteristics
 - 3.1.2 Sine Vibration Test Characteristics
 - 3.1.3 Random Vibration Test Characteristics
 - 3.1.4 Quasi-Static (Sine Burst) Test Characteristics
 - 3.2 Accelerometer Points and Specifications
- 4. QM VibrationTest
 - 4.1 Issues of Vibration Test
 - 4.2 X Axis
 - 4.2.1 Response Data
 - 4.2.1.1 Pre Sine Sweep VibrationTest (X Axis)
 - 4.2.1.2 SineVvibration Test (X Axis)
 - 4.2.1.3 Post Sine Sweep VibrationTest_1 (X Axis)
 - 4.2.1.4 Random Vibration Test (X Axis)
 - 4.2.1.5 Post Sine Sweep Vibration Test_2 (X Axis)
 - 4.2.1.6 Quasi-Static (Sine Burst) Test (X Axis)
 - 4.2.1.6.1 Real Input Data of Quasi-Static (Sine Burst) Test (X Axis)
 - 4.2.1.7 Post Sine Sweep Vibration Test_3 (X Axis)
 - 4.2.2 Result
 - 4.3 Y Axis
 - 4.3.1 Response Data
 - 4.3.1.1 Pre Sine Sweep Vibration Test (Y Axis)

- 4.3.1.2 Sine Vibration Test (Y Axis)
- 4.3.1.3 Post Sine Sweep Vibration Test_1 (Y Axis)
- 4.3.1.4 Random Vibration Test (Y Axis)
- 4.3.1.5 Post Sine Sweep Vibration Test_2 (Y Axis)
- 4.3.1.6 Quasi-Static (Sine Burst) Test (Y Axis)
 - 4.3.1.6.1 Real Input Data of Quasi-Static (Sine Burst) Test (Y Axis)
- 4.3.1.7 Post Sine Sweep Vibration Test_3 (Y Axis)
- 4.3.2 Result
- 4.4 Z Axis
 - 4.4.1 Response Data.
 - 4.4.1.1 Pre Sine Sweep Vibration Test (Z Axis)
 - 4.4.1.2 Sine Vibration Test (Z Axis)
 - 4.4.1.3 Post Sine Sweep Vibration Test_1 (Z Axis)
 - 4.4.1.4 Random Vibration Test (Z Axis)
 - 4.4.1.5 Post Sine Sweep Vibration Test_2 (Z Axis)
 - 4.4.1.6 Quasi-Static (Sine Burst) Test (Z Axis)
 - 4.4.1.6.1 Real Input Data of Quasi-Static (Sine Burst) Test (Z Axis)
 - 4.4.1.7 Post Sine Sweep Vibration Test_3 (Z Axis)
 - 4.4.2 Result
- 4.5 Pass/Fail Criteria

1. Introduction

This document provides the vibration test procedure of SIGMA QM (Qualification Model) by falcon 9 environment data. The sine sweep vibration test, sine vibration test, random vibration test and quasi-static test of the SIGMA QM are going to do at KAIST Satellite Research Center in Korea.

1.1 Characteristics of SIGMA

Table 1 Specification of the SIGMA

	Characteristics			
Size	3-unit CubeSat (100 mm x 100 mm x 340.5 mm)			
Weight and power	3.6 kg, 4 W			
		Nadir mode (Focus on earth)		
ACS (Attitude Control System)	Rod	1-unit torque rod		
(Attitude Control System)	Actuator	2-axis magnetic torque coil		
Commission	Uplink	VHF		
Communication	Downlink	UHF, S-band		
Life time	3 months			
Devload	TEPC	Effect with human skin tissue and radiation exposure		
rayioau	MAG	Research of Electro Magnetic Ion Cyclotron (EMIC)		

2. Equipment for the Vibration Test

2.1. Shaker

- Model 1216VH Electrodynamics shaker, Ling electronics

Figure 1. Front side of shaker 1216VH

Figure 2. Left side of shaker 1216VH

Axial stiffness	77 kN/m		
Armature diameter	438 mm		
Armature mass	54.43 kg		
Armature suspension	Half-loop metallic flexures		
Static load support	454 kg		
Maximum velocity	1.78 m/s		
Frequency range	4 to 3000 Hz		
Maximum acceleration	100 g sine vector		
Utility power	123 kVA		
	53.4 peak sine		
Force rating	53.4 rms random		
	106.8 kN Shock		

Table 2. Specification of shaker 1216VH

- Model V964 Electrodynamics shaker, Brüel & Kjaer

Figure 3. Inner structure of shaker V964

Table 3. Specification of shaker V964

System sine force peak	89 kN
System max random force rms	89 kN
Max acceleration sine peak	100 g
System velocity sine peak	2.0 m/s
Displacement continuous pk-pk	38.1 mm
Armature diameter	432 mm
Cooling system	LDS's water cooling
Usable frequency range	5 to 2500 Hz
Moving element mass	59.0 kg

2.2. Accelerometer

_

< P/N: 8763A500, KISTLER>

Figure 4. KISTLER accelerometer (3 axis)

Figure 5. Dimension of accelerometer (1 axis)

Figure 6. KISTLER accelerometer (1 axis)

Figure 7. Dimension of accelerometer (1 axis)

Table 4. Specification of KISTLER accelerometer

Specification	Unit	Accelerometer (3 axis)	Accelerometer (1 axis)	
Range	g	± 50	± 500	
Sensitivity, ± 10%	mV/g	100	10	
Frequency response, ± 5 %	Hz	0.5 to 7000	2 to 10000	
Threshold, nom	grms	0.0003	0.01	
Transverse sensitivity, typ.	%	2.5	1.5	
Non-linearity	%FSO	± 1	± 1	
Temp. coeff.: sensitivity	%/°C	-0.06	-0.03	
Operating temperature	°C	-55 to 90	-65 to 250	
Mass	grams	4.5	1.3	

3. Test Procedure

Prior to arrival at the test facility shakedown test will be conducted using mass dummy (1 to 2kg) in order to validate the Qualification level random noise. This shall be conducted in lateral directions.

The test sequence for each of the three orthogonal axes is normally as follows:

- I. Spacecraft functional checkout
- II. Qualification random noise
- III. Spacecraft functional checkout

Note: The test pod should not exhibit significant resonant frequencies below 2000Hz. The order in which the axis tests are carried out may vary due to the initial configuration of the shaker.

Accelerometer readings will be inspected after each test in order to identify possible anomalies. Visual Inspection of the FM spacecraft shall be performed after the test sequence.

Run #	Test Description	Comments				
Run 1	Function Test	Spacecraft functional checkout				
Run 2	X_axis vibration test	Sine sweep vibration test \rightarrow Sine vibration test \rightarrow tion testSine sweep vibration test \rightarrow Random vibration test \rightarrow Sine sweep vibration test \rightarrow Quasi-static test \rightarrow Sine sweep vibration				
Run 3	Check	Check by Eye and check the CMD				
Run 4	Y_axis vibration test	Sine sweep vibration test \rightarrow Sine vibration test \rightarrow Sine sweep vibration test \rightarrow Random vibration test \rightarrow Sine sweep vibration test \rightarrow Quasi-static test \rightarrow Sine sweep vibration test				
Run 5	Check	Check by Eye and check the CMD				
Run 6	Z_axis vibration test	Sine sweep vibration test \rightarrow Sine vibration test \rightarrow Sine sweep vibration test \rightarrow Random vibration test \rightarrow Sine sweep vibration test \rightarrow Quasi-static test \rightarrow Sine sweep vibration test				
Run 7	Function Test	Spacecraft functional checkout				

Table 5. SIGMA vibration test work flow

Figure 8. Block diagram of SIGMA vibration test work flow

3.1. Test Requirement

Test characteristics of qualification followed ISL pre-document(TBD). ISL document (ISL.ISILaunch09.EL) was not delivered before QM vibration test. Levels in parenthesis on table 6, 7, 8, 9 are characteristics of ISL pre-document.

3.1.1 Sine Sweep Vibration Test Characteristics

Characteristic		Qualification	Acceptance
Test		Required	Required
Directions	{BRF}	X, Y, Z	X, Y, Z
Туре		Harmonic	Harmonic
Amplitude		0.4 (0.2) g	0.4 g
Frequency range		5 – 2000 [Hz]	5 – 2000 [Hz]
Sweep Rate		2 (2) [oct/min]	2 [oct/min]

Table 6. Test characteristics of sine sweep vibration

** First natural frequency: > 90 Hz

3.1.2 Sine Vibration Test Characteristics

Characteristic		Qualification	Acceptance
Test		Not required	Not required
Directions	{BRF}	X, Y, Z	X, Y, Z
Profile	Frequency range [Hz] 5 8 100	Amplitude [g] 1.3 2.5 2.5	Amplitude [g] 1.0 2.0 2.0
Sweep rate		2 [oct/min] 4 [oct/min]	
Tolerance		Amplitude: \pm 3dB	

Table 7. Test characteristics of sine vibration test

** Qualification test of sine vibration is not required but test was conducted based on Falcon9 level.

3.1.3 Random Vibration Test Characteristics

Characteristic		Qualification	Acceptance
Test		Required	Required
Directions	{BRF}	X, Y, Z	X, Y, Z
	Frequency range [Hz]	Amplitude [g^2/Hz]	Amplitude [g^2/Hz]
	20	0.026 (0.016)	0.013
Profile	50	0.16 (0.1)	0.08
	800	0.16 (0.1)	0.08
	2000	0.026 (0.016)	0.013
RMS acceleration		14.1 (11.2) [g]	10.0 [g]
Duration		120 (120) [sec/axis]	60 [sec/axis]

 Table 8. Test characteristics of random vibration test

3.1.4 Quasi-Static (Sine Burst) Test Characteristics

Table 9. Test characteristics of quasi-static(sine burst) test

Characteristic	Qualification [g]	Acceptance [g]
Analysis	Required	Required
Test	Required	Required
Longitudinal {LRF}	+ 18.75 (22.5) g	+ 15.0 g
Transverse {LRF}	+ 18.75 (22.5) g	+ 15.0 g
Duration	≥5 cycles@full level per axis (7 ramp cycles) 60 (60) sec	≥5 cycles@full level per axis 30 sec

3.2 Accelerometer Points

Table 10. Test point location

Test Point Location						
Equipment	Remarks					
Chassis	А	Х	Near TEPC	Internal		
Chassis	В	Z	Near TEPC	Internal		
TEPC mount	С	Y	TEPC mount	Internal		
DC-DC Converter mount	D	X, Y, Z	DC-DC Converter mount	Internal		
Test POD	Е	X, Y, Z	Top plate	External		
Fixture	F	X, Y, Z	Top plate	External		

Figure 9. Location of internal accelerometer points (A, C, D)

Figure 10. Location of internal accelerometer point (B)

Figure 11. Location of external accelerometer points

Position	Sensor ID	Seosor direction	Ch	Asix of SIGMA	Sensitivity (mV/g)
Top Plate	S03	-	7	Z	9.97
Left Plate	S12	-	8	Х	9.84
Internal Mount	S10	-	9	Y	9.83
	SN751	X	11	Х	10.83
DC-DC Converter Mount		у	12	Z	10.89
		Z	13	Y	9.94
	SN870	Х	14	Y	10.18
Top on POD		у	15	Х	9.81
		Z	16	Z	10.12
		Х	17	Х	10.18
On Fixture	SN334	у	18	Z	10.29
		Z	19	Y	10.86

Table 11. Information of accelerometer sensors

Table 12. Information of accelerometer control sensors

Control	Sensor ID	Sensor direction	Ch	Asix of SIGMA	Sensitivity (mV/g)
Lateral control (fixture)	SN492	Lateral	2	Lateral	101.30
Vertical Control (fixture)	SN492	Vertical	2	Z	101.30
	*SN493	Vertical	3	Z	101.60
	SN717	Vertical	4	Z	101.40

*replaced to SN494 at random vibration test of Z axis

Table 13. Channel information of each axis

Direction of SIGMA	Measurement channel information
X axis	Ch8, Ch11, Ch15, Ch17
Y axis	Ch9, Ch13, Ch14, Ch19
Z axis	Ch7, Ch12, Ch16, Ch18

4. QM Vibration Test

4.1 Issues of Vibration Test

Table 14. Issues of vibration test per each axis

Axis	Type of vibration test	Remarks
	PRS	-
	SIN	-
	POS #1	Natural frequency was changed because of non-fixing of satellite with spring and pod.
V	RAN	-
Х	POS #2	Natural frequency was changed because of non-fixing of satellite with spring and pod.
	QSS	Because of spring, all axis of satellite was tested under more high amplitude level. But by checking data of control sensor, we confirmed input amplitude level as 22.5 g.
	POS #3	Natural frequency was changed because of non-fixing of satellite with spring and pod.
	PRS	-
	SIN	In 19 ch, unusual peak was occurred at 14 Hz. We checked problem of SN334 and ignored data of 19ch.
	POS #1	-
	RAN	-
Y	POS #2	-
	QSS	Because of spring, all axis of satellite was tested under more high amplitude level. But by checking data of control sensor, we confirmed input amplitude level as 22.5 g Program shut down for reason of high amplitude level by spring. So we couldn't get quasi-static test data of Y axis except control data. But test was verified by checking control data and functional test of Y axis.
	POS #3	-
Z	PRS	Test was shut down at 1998 Hz. So we couldn't get data of from 1998 to 2000 Hz section.

CubeSat SIGMA Scientific cubesat with Instruments for Global Magnetic fields and rAdiations

SIN	In 18 ch, unusual peak was occurred. We considered simple noise problem about that peak but origin was unknown. Sensor of 18ch position was placed on fixture, we decided peak wasn't affect satellite.
POS #1	After sine vibration test, NF peak and shape was changed. We considered some part was non-fixing by sine vibration test. In functional test and visual inspection, we checked a loose screw.
RAN	SN493 that vertical control sensor was changed to SN494.
POS #2	Because of change of NF peak and graph, we couldn't find accurate NF. But overall shapes of graph was similar with other sine sweep vibration tests
QSS	Because of spring, all axis of satellite was tested under more high amplitude level. But by checking data of control sensor, we confirmed input amplitude level as 22.5 g
POS #3	Because of change of NF peak and graph, we couldn't find accurate NF. But overall shapes of graph was similar with other sine sweep vibration tests

*PRS : Pre sine sweep vibration test, SIN : Sine vibration test, POS : Post sine sweep vibration test, RAN : Random vibration test, QSS : Quasi-static test

4.2 X Axis

4.2.1 Response Data

4.2.1.1 Pre Sine Sweep VibrationTest (X Axis)

Figure 12. Pre sine sweep vibration test (X axis)

4.2.1.2 SineVvibration Test (X Axis)

Figure 13. Sine vibration test (X axis)

4.2.1.3 Post Sine Sweep VibrationTest_1 (X Axis)

Figure 14. Post sine sweep vibration test_1 (X axis)

Natural frequency was changed because of non-fixing of satellite with spring and pod.

4.2.1.4 Random Vibration Test (X Axis)

4.2.1.5 Post Sine Sweep Vibration Test_2 (X Axis)

Figure 16. Post sine sweep vibration test_2 (X axis)

Natural frequency was changed because of non-fixing of satellite with spring and pod.

4.2.1.6 Quasi-Static (Sine Burst) Test (X Axis)

Figure 17. Control data of quasi-static (sine burst) test (X axis)

Figure 18. 11ch data of quasi-static (sine burst) vibration test (X axis)

Because of spring, all axis of satellite was tested under more high amplitude level. But by checking data of control sensor, we confirmed input amplitude level as 22.5 g.

4.2.1.6.1 Real Input Data of Quasi-Static (Sine Burst) Test (X Axis)

Table 14. Real input data of X axis quasi static vibration test

Characteristic			Real input data
Amplitudo [g]	11 .1	22.5 g * 1/2	11.8 g
Ampitude [g]		22.5 g	24.203 g

4.2.1.7 Post Sine Sweep Vibration Test_3 (X Axis)

Figure 19. Post sine sweep vibration test_3 (X axis)

Natural frequency was changed because of non-fixing of satellite with spring and pod.

4.2.2 Result

Figure 20. Comparison of ch11 sine sweep vibration test

SN751 (ch11, ch12, ch13) was placed on DC – DC converter mount. DC – DC converter mount is well fixed satellite. So SN751 was less-affected by vibration damping. For that reason, we checked channels of SN751 for verification natural frequency of each axis.

Axis	Test type	Natural frequency	Remarks
	PRS	213.10 Hz	
	SIN	-	Natural frequency is changed because of non-
	POS #1	184.58 Hz	fixing of satellite with spring and pod.
Х	RAN	-	
	POS #2	166.70 Hz	Functional test and eye check have been passed.
	QSS	-	
	POS #3	160.81 Hz	

4.3 Y Axis

4.3.1 Response Data

4.3.1.1 Pre Sine Sweep Vibration Test (Y Axis)

Figure 21. Pre sine sweep vibration test (Y axis)

4.3.1.2 Sine Vibration Test (Y Axis)

Figure 22. Sine vibration test (Y axis)

In 19 ch, unusual peak was occurred at 14 Hz. We checked problem of SN334 and decided to ignore data of 19ch.

4.3.1.3 Post Sine Sweep Vibration Test_1 (Y Axis)

4.3.1.4 Random Vibration Test (Y Axis)

4.3.1.5 Post Sine Sweep Vibration Test_2 (Y Axis)

Figure 25. Post sine vibration test_2 (Y axis)

4.3.1.6 Quasi-Static (Sine Burst) Test (Y Axis)

Figure 26 Control data of quasi-static (sine burst) test (Y axis)

Because of spring, all axis of satellite was tested under more high amplitude level. But by checking data of control sensor, we confirmed input amplitude level as 22.5 g

When we tested to quasi-static test of Y axis was applied reference peak level 22.5, program shut down because of high amplitude level. So we couldn't get quasi-static test data of Y axis except control data. But as we can see, Figure 26 is shown that reference peak level was applied to quasi-static test of Y axis as 22.5. And we verified quasi-static test of Y axis by checking functional test of Y axis which was conducted after quasi-static test, post sine sweep vibration test_3.

4.3.1.6.1 Real Input Data of Quasi-Static (Sine Burst) Test (Y Axis)

Table 16. Real input data of quasi static vibration test (Y axis)

Characteristic			Real input data
A multitude [a]	13 ch	22.5 g * 1/2	16.986 g
Ampillude [g]		22.5 g	33.775 g

4.3.1.7 Post Sine Sweep Vibration Test_3 (Y Axis)

Figure 27. Post sine sweep vibration test_3 (Y axis)

4.3.2 Result

Figure 28. Comparison of ch13 sine sweep vibration test

Table 17.	Comparison	of natural	frequency	(Y	axis)
-----------	------------	------------	-----------	-----------	-------

Axis	Test type	Natural frequency	Remarks
	PRS	377.83 Hz	
	SIN	-	
Y	POS #1	377.83 Hz	
	RAN	-	
	POS #2	381.24 Hz	
	QSS	-	
	POS #3	381.24 Hz	

4.4 Z Axis

4.4.1 Response Data

4.4.1.1 Pre Sine Sweep Vibration Test (Z Axis)

Figure 29. Pre sine sweep vibration test (Z axis)

Test was shut down at 1998 Hz. So we couldn't get data of from 1998 to 2000 Hz section.

4.4.1.2 Sine Vibration Test (Z Axis)

Figure 30. Sine vibration test (Z axis)

In 18 ch, unusual peak was occurred. We considered simple noise problem about that peak but origin was unknown. Sensor of 18ch position was placed on fixture, so we decided peak wasn't affect satellite and ignored that peak.

4.4.1.3 Post Sine Sweep Vibration Test_1 (Z Axis)

Figure 31. Post sine sweep vibration test_1 (Z axis)

After sine vibration test, NF peak and graph shape was changed. We considered some part was non-fixing by sine vibration test. At functional test and visual inspection, we checked a loose screw.

4.4.1.4 Random Vibration Test (Z Axis)

SN493 vertical control sensor was changed to SN494.

Elapsed Time: 000:04:19 Filter Type: Proportional Fundamental: 140.00 %, BB RMS: 227. ms Remaining Time: 000:00:00 Test Range: 5.000, 2000.000 Hz Number: 1.00 Rate 1: 4.0000 oct/min xep: 2000 Auxiliary Ch Fu Ch 7 Auxiliary Ch 12 Fun tamental Ch 12 uxiliary Ch 16 Ch 16 Fundamental ٨ iliary Ch 18 Fundamental Ch 18 Log Acceleration g (0-pk) ACP: 1 0.1 0.01 100 1000 2000 Log Frequency 04z A.A.A.A.A.A. 15:09:20 Kyung Hee Univ. Cubesat SIGMA QM Modal Survey3 (in Z) Thu Dec 11 2014 Test by SaTReC (Dec. 11, 2014) Data Review File A: TQ06_KHU_Z05_LLS.001

4.4.1.5 Post Sine Sweep Vibration Test_2 (Z Axis)

Figure 33. Post sine sweep vibration test_2 (Z axis)

Because of change of NF peak and graph shape, we couldn't find accurate NF. But overall graph shape was similar with other sine sweep vibration tests.

4.4.1.6 Quasi-Static (Sine Burst) Test (Z Axis)

Figure 35. 12 ch data of quasi-static (sine burst) vibration test (Z axis)

Because of spring, all axis of satellite was tested under more high amplitude level. But by checking data of control sensor, we confirmed input amplitude level as 22.5 g

4.3.1.6.1 Real Input Data of Quasi-Static (Sine Burst) Test (Z Axis)

Characteristic			Real input data
Amplitudo [a]	12 ch	22.5 g * 1/2	12.597
Amplitude [g]		22.5 g	24.692

Table 18. Real input data of quasi static (sine burst) vibration test (Z axis)

4.4.1.7 Post Sine Sweep Vibration Test_3 (Z Axis)

Figure 36. Post sine sweep vibration test_3 (Z axis)

Because of change of NF peak and graph shape, we couldn't find accurate NF. But overall graph shape was similar with other sine sweep vibration tests.

4.4.2 Result

Figure 37. Comparison of ch12 sine sweep vibration test (Z axis)

Axis	Test type	Natural frequency	Remarks
	PRS	300.86 Hz	
	SIN	-	From POS 2 to POS 3, we couldn't find accurate NF.
	POS #1	355.85 Hz	Even if NF and test graph was changed gradually,
Z	RAN	-	overall graph shape is similar with each other.
POS #2	POS #2	-	Functional test and eve check have been passed
	QSS	-	T unctional test and eye check have been passed.
	POS #3	-	

Table 19. Comparison of natural frequency (Z axis)

4.5 Pass/Fail Criteria

A successful test is defined by a component not being at all affected by the vibrations test. This is measured by visual inspection, as well as performing a physical and/or electrical inspection before and after the vibration test. This ensures that the component was working before testing began, and continued to work after testing was completed. Even if the component passes the physical/electrical test after the vibration test, any noticeable changes made to the component during the vibration test will be enough to fail the component.

Table 20. Explanation of run

Run 1	Function test is going to start before all vibration test.
Run 3	After X_axis vibration test, check by Eye and check the CMD
Run 5	After Y_axis vibration test, check by Eye and check the CMD
Run 7	After Z_axis vibration test, function test is going to start.

Table 21. Check list of pass/fail criteria

NO	Category	Check Item	Run 1	Run 3	Run 5	Run 7				
1. TEPC										
1	TEPC	No mechanical damage	Р	Р	Р	Р				
2	TEPC	Electrical functionality	Р	Р	Р	Р				
2. MAG										
1	MAG	No mechanical damage	Р	Р	Р	Р				
2	MAG	Electrical functionality	Р	Р	Р	Р				
3. Avionics stack										
1	Deployment switch	Plunger travels smoothly	Р	Р	Р	Р				
2	RBF switch	Remains closed	Р	Р	Р	Р				
3	Motherboard	Retains full functionality	Р	Р	Р	Р				
4	Motherboard	No mechanical damage	Р	Р	Р	Р				
5	EPS	Retains full functionality	Р	Р	Р	Р				

6	EPS	No mechanical damage	Р	Р	Р	Р				
7	Battery	Retains full functionality	Р	Р	Р	Р				
8	Battery	No mechanical damage	Р	Р	Р	Р				
9	UHF Receiver	No mechanical damage	Р	Р	Р	Р				
10	IIB	Retains full functionality	Р	Р	Р	Р				
11	IIB	No mechanical damage	Р	Р	Р	Р				
4. Cha	ssis									
1	Chassis	No galling on chassis rails	Р	Р	Р	Р				
5. Tore	que coils									
1	Torque coils	No mechanical damage	Р	Р	Р	Р				
2	Torque coils	Retain full functionality	N/A	N/A	N/A	N/A				
6. Solar panels										
1	Solar panels	No structural damage that causes loss of functionality	Р	Р	Р	Р				
2	Solar panels	Electrical functionality	Р	Р	Р	Р				
7. UHI	F antenna assembl	ly								
1	UHF antenna	No loss of deployment functionality	N/A	N/A	N/A	N/A				
2	UHF antenna	No loss of radio functionality	N/A	N/A	N/A	N/A				
8. Patc	ch antennas									
1	Patch antennas	Coax still intact	Р	Р	Р	Р				
2	Patch antennas	No physical damage	Р	Р	Р	Р				
3	Patch antennas	Electrical Functionality	N/A	N/A	N/A	N/A				
9. Cale	9. Calex DC-DC Converter									
1	Calex DC-DC converter	Pins still intact and physically undamaged	Р	Р	Р	Р				
2	Calex DC-DC converter	Electrical Functionality	Р	Р	Р	Р				
10. Ha	10. Harnessing									
1	Harnessing	No loss of captivity	Р	Р	Р	Р				
2	Harnessing	Electrical Functionality	Р	Р	Р	Р				

* P: Pass, F: Fail, N/A: Not Applicable

