석사학위논문

초소형 과학위성 SIGMA의 통신 시스템 성능 시험 및 분석

- Performance Test for the SIGMA Communication System -

지도교수 진호

경희대학교 대학원 우주탐사학과

정선영

2017 년 2 월
석사학위논문

초소형 과학위성 SIGMA의 통신 시스템 성능 시험 및 분석

- Performance Test for the SIGMA Communication System -

지도교수 진호

경희대학교 대학원 우주탐사학과

정선영

2017년 2월
초소형 과학위성 SIGMA의 통신 시스템 성능 시험 및 분석

- Performance Test for the SIGMA Communication System -

지도교수 진 호

이 논문을 석사 학위논문으로 제출함

경희대학교 대학원
우주탐사학과

정선영

2017년 2월
정선영의 이학석사 학위 논문을 인준함

주심교수 선종호 (인)
부심교수 김관혁 (인)
부심교수 진호 (인)

경희대학교 대학원

2017년 2월
차례

국문 요약 ... iii

그림 목차 ... iv

표 목차 .. vi

제 1 장. 서론 ... 1

1.1 큐브위성의 정의 .. 1

1.2 큐브위성 발사 현황 ... 1

1.3 SIGMA (KHUSAT-3) ... 5

제 2 장. 큐브위성의 통신 시스템 현황 ... 7

2.1 큐브위성의 통신 시스템 현황 .. 7

2.2 과학임무 목적의 큐브위성 통신 시스템 .. 8

제 3 장. SIGMA의 통신 시스템 ... 13

3.1 통신 시스템 ... 13

3.1.1 통신 링크 ... 13

3.1.2 하드웨어 ... 16

3.2 지상국 ... 20

제 4 장. SIGMA 통신 테스트 결과 ... 29

4.1 링크 해석 (Link Budget) .. 29

4.1.1 업링크 ... 29

4.1.2 다운링크 .. 32

4.2 Field 테스트 ... 34

4.2.1 테스트 개요 .. 34

4.2.2 테스트 과정 .. 37

4.2.3 랩 테스트 (Near-field Test) 결과 ... 38

4.2.4 Far-field 테스트 결과 ... 41

4.3 지상국 장비 테스트 .. 48

4.3.1 테스트 개요 및 과정 ... 49
4.3.2 FO-29 ... 51
4.3.3 SO-50 ... 55
제 5 장. 결론 .. 58
참고 문헌 .. 60
ABSTRACT .. 62
APPENDIX .. 63
감사의 글
국문 요약

SIGMA (Scientific cubesat with Instruments for Global Magnetic fields and rAdiations)는 경희대학교에서 개발한 3 U 크기의 초소형 과학위성으로, 고도 약 450 km에서 720 km 사이의 저궤도에서 운용된다. SIGMA는 주 탑재체인 TEPC (Tissue Equivalent Proportional Counter)와 부 탑재체인 MAG (miniaturized fluxgate MAGnetometer)를 통해 우주 방사선과 근 지구 자기장을 측정한다. 업링크 중심 주파수는 VHF 대역의 145.210 MHz이고, 다운링크 중심 주파수는 UHF 대역의 435.780 MHz로 모두 아마추어 대역을 사용한다. SIGMA의 통신 시스템은 OBC (On Board Computer)와 연결되어 위성에서의 송수신 명령을 처리한다. 지상국은 경희대학교 천문대 내에 구축되어 있으며 위성과의 송수신이 모두 가능하다.

본 연구에서는 SIGMA와 지상국 간의 무선통신 신뢰성을 검증하기 위하여 통신 시스템의 성능을 시험하였다. 먼저 링크 버짓(Link Budget)을 수행하여 이론적으로 통신이 가능한 3 dB 이상의 링크 마진 값을 얻었다. 또한, Field 테스트에서는 SIGMA와 지상국 간의 기본적인 데이터 송수신 시험을 수행하였고, 여러 가지 변수를 주어 일정 기준 이상에서의 통신이 가능함을 확인하였다. 그리고 지상에서 진행되는 통신 테스트의 한계를 극복하기 위하여, SIGMA의 지상국과 실제 운용되고 있는 OSCAR (Orbiting Satellite Carrying Amateur Radio) 위성과의 음성 신호 송수신 실험을 통해 지상국 장비의 성능을 검증하였다.

SIGMA와 지상국 간의 통신 시스템 성능 시험을 통한 분석 결과, 위성 발사 후에도 정상적인 통신이 가능할 것으로 판단되며, 이로 인하여 우주급 탑재체의 기술을 검증하고 근 지구 환경의 과학적인 연구가 가능할 것으로 예상한다. 본 연구는 초소형 인공위성의 통신 시스템 구축과 성능 시험을 위한 자료로 활용될 것으로 기대한다.
그림 목차

그림 1 발사된 큐브위성의 통신 성공 여부 현황 (2011 – 2015 년) ...4
그림 2 과학임무 목적인 큐브위성의 통신 성공 여부 현황 (2011 – 2015 년) 4
그림 3 개발 완료된 SIGMA 의 Flight Model...6
그림 4 발사된 큐브위성의 주파수 대역 현황 (2011 – 2015 년)..9
그림 5 발사된 큐브위성의 데이터 통신속도 현황 (2011 – 2015 년).................................... 10
그림 6 과학임무 목적인 큐브위성의 주파수 현황 (2011 – 2015 년)................................. 11
그림 7 과학임무 목적인 큐브위성의 데이터 통신속도 현황 (2011 – 2015 년)........... 12
그림 8 SIGMA 의 통신 시스템 구성도 ..14
그림 9 ISIS 사의 TRXVU (Top view)...16
그림 10 ISIS 사의 큐브위성 안테나 모듈 (좌: Top view, 우: 안테나가 전개된 모습 (Image credit: ISIS)) ..18
그림 11 지상국의 일반적인 구성 ..20
그림 12 경희대학교 지상국 내의 RF 장비 구성 ..22
그림 13 HRD 실행 화면 (차례로 트랜시버 제어, 로테이터 제어, 위성 트래킹) 23
그림 14 Commander 실행 화면 ..24
그림 15 SDR Sharp 을 통한 신호 수신 ..25
그림 16 Soundmodem 으로 SIGMA 의 비건 신호를 수신한 화면 ..26
그림 17 AGW OnlineKiss 에서 수신한 데이터...27
그림 18 TMP 로 SIGMA 의 하우스키핑 데이터를 수신한 화면28
그림 19 안테나를 기준으로 거리에 따라 구분된 영역 ... 35
그림 20 랩 테스트의 구축 환경 ..38
그림 21 콘솔 모드에서 확인한 위성의 하우스키핑 데이터 ..39
그림 22 지상국에서 수신한 비컨 및 하우스키핑 데이터..40
그림 23 Far-field 테스트 지점까지의 직선거리 (지도 출처: 네이버)..........................41
그림 24 Far-field 테스트에서의 큐브위성 자세 기준 ..45
그림 25 지상국 야기 안테나의 포인팅 방위각 ..46
그림 26 지상국 장비 테스트 흐름도 ..50
그림 27 SDR Sharp 으로 FO-29 의 비컨 신호를 수신한 화면52
그림 28 Morse View 로 재생한 비컨 신호 파일 예시 ...53
그림 29 디코더를 사용하여 비컨 데이터를 분석한 화면 ...54
그림 30 HRD 를 통한 위성 컨택 시간 예측 ..56
그림 31 SDR Sharp 을 통한 음성신호 수신 화면...56
표 목차

표 1 큐브위성의 발사 및 통신 성공 현황 (2011 - 2015 년) ..3
표 2 SIGMA의 사양 ...6
표 3 위성 주파수 대역 분류 ..8
표 4 SIGMA의 통신 시스템 사양 ..15
표 5 TRXVU의 RF 인터페이스 ...17
표 6 큐브위성용 안테나 모듈의 사양 ..19
표 7 업링크 요구조건 ..30
표 8 업링크 해석 결과 ..31
표 9 다운링크 요구조건 ...32
표 10 다운링크 해석 결과 ..33
표 11 Far-field 거리 계산 결과 ...36
표 12 FSPL 계산 결과 ..36
표 13 자유공간손실에 따른 테스트 결과 (0.4 km) ...42
표 14 자유공간손실에 따른 테스트 결과 (8.7 km) ...43
표 15 위성 안테나 사출 여부 및 위성의 자세에 따른 결과 (0.4 km)44
표 16 지상국 안테나 포인팅과 위성의 자세에 따른 결과 (8.7 km)46
표 17 도플러 주파수 편이에 따른 결과 ..47
표 18 SIGMA와 테스트 위성의 비교 ..49
표 19 테스트 일시 ...50
표 20 FO-29의 사양 ...51
표 21 SO-50의 사양 ...55
제 1 장. 서론

1.1 큐브위성의 정의

“Smaller, Cheaper, Faster, Better”. 이 네 가지 단어들은 앞서 수행되었던 미션에서 사용된 인공위성들의 개발 성향을 나타낸다. 수많은 대학교와 단체들은 적은 비용으로 개발과 발사가 가능한 초소형 위성을 통해 위성 개발의 기회를 가질 수 있게 되었다. 큐브위성은 스탠포드 대학교 (Stanford University)와 캘리포니아 공과대학교 (California Institute of Technology)에 의해서 정의되었다. 큐브위성의 기준이 되는 1 U 크기는 가로, 세로, 높이 각각 10 cm의 정육면체 크기로, 1 kg 또는 그 이하의 무게를 가진다. 이외에도 1.5 U, 2 U, 3 U 와 같이 다양한 크기의 큐브위성이 존재하며 최근 6 U 크기의 큐브위성도 다수 개발되고 있다. 큐브위성의 개발은 교육뿐만 아니라 미래의 우주탐사 장비 개발에도 좋은 기반이 될 것이다.

1.2 큐브위성 발사 현황

큐브위성은 발사 시 대형 위성에 비하여 차지하는 크기와 무게가 현저하게 작으므로 여러 기를 하나의 발사체에 탑재하여 발사가 가능하다. 일반적으로 주 탑재체로는 중 · 대형급 위성, 부 탑재체로 여러 기의 큐브위성들이 발사체에 탑재된다. 큐브위성은 2011 년부터 2015 년까지 5 년 동안 총 361 기가 발사되었다. 이 수치는 발사 일시를 기준으로 조사된 것이며, 발사 일시와 궤도상에서 사출된 일시가 불일치할 경우 발사 일시를 기준으로 하였다. 그림 1 과 같이 2015 년의 큐브위성 발사가 2011 년에 비해 매우 증가한 것을 알 수 있다. 발사된 큐브위성 중 과학적 임무를 주 목적으로 가지는 큐브위성의 수는 30 기로, 이를 따로 분류하여 그림 2 에 나타내었다. 과학임무 목적의 큐브위성은 2012 년을 제외하고 조금씩 증가하는 경향을 보이고 있다. 그림 1 과 그림 2 의 막대그래프 중 Success 항목은 Saint Louis University 의 CubeSat Database 기준으로 2011 년부터 2015 년까지 발사되었던 큐브위성 중 Mission
status 레벨이 3 이상인 큐브위성의 수를 나타낸 것이다. 다음은 CubeSat Database에 따른 Mission status 레벨의 정의이다.

- 0 (Manifested): A launch date has been published. We don't keep track of missions until a launch date has been published. (And even then, we usually don't include them on the public database, below. Too much variability in launch dates/mission definitions before launch.)

- 1 (Launched): The rocket began liftoff. (Launch failures usually stop at Mission Status 1.)

- 2 (Deployed): The rocket began liftoff. (Launch failures usually stop at Mission Status 1.)

- 3 (Commissioning): The spacecraft has had at least one uplink and downlink.

- 4 (Primary operations): The spacecraft is taking actions that achieve primary mission success. (i.e., receiving commands, downlinking mission data)

- 5 (Mission success): Primary mission objectives have been met. The spacecraft may continue to operate, run secondary missions, etc.

총 361 기 중 약 65 %인 235 기가 지상국과의 통신에 성공하였고, 그 중 과학임무 목적의 큐브위성 총 30 기 중 약 73 %인 22 기가 통신에 성공하였다. 과학임무 목적으로 분류된 경우는 과학적 연구 목적을 가지는 큐브위성으로, 지구 및 태양 과학, 우주 기상 등을 포함한다. 또한 수집한 데이터의 최종 사용 연구자가 확실한 위성이어야 한다. 발사 현황에 대한 자세한 수치는 표 1 에 나타내었다.
표 1 큐브위성의 발사 및 통신 성공 현황 (2011 - 2015 년)

<table>
<thead>
<tr>
<th>Year</th>
<th>Total launched</th>
<th>Science mission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Success</td>
</tr>
<tr>
<td>2011</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>2012</td>
<td>23</td>
<td>16</td>
</tr>
<tr>
<td>2013</td>
<td>79</td>
<td>62</td>
</tr>
<tr>
<td>2014</td>
<td>128</td>
<td>85</td>
</tr>
<tr>
<td>2015</td>
<td>119</td>
<td>64</td>
</tr>
<tr>
<td>Total</td>
<td>361</td>
<td>235</td>
</tr>
</tbody>
</table>
그림 1 발사된 큐브위성의 통신 성공 여부 현황 (2011 – 2015 년)

그림 2 과학임무 목적의 큐브위성의 통신 성공 여부 현황 (2011 – 2015 년)
1.3 SIGMA (KHUSAT-3)

경희대학교에서 개발한 SIGMA (Scientific cubesat with Instruments for Global Magnetic fields and rAdiations)는 3 U 크기의 큐브위성으로, Space X 사의 Falcon 9에 탑재되어 2017년 상반기에 발사될 예정이다. SIGMA의 운용기간은 약 3개월이며, 450 km에서 720 km 고도 사이의 저궤도에서 크게 두 가지의 과학적 임무를 가진다. 첫째로, 주 탑재체인 TEPC (Tissue Equivalent Proportional Counter)를 이용하여 독자적인 우주 방사선 데이터를 확보하고, 유인 우주활동 시 우주 방사선이 인체 조직에 미치는 영향을 연구한다. 우주 방사선 데이터는 전 세계적으로 상용되지 않으므로 SIGMA를 통한 데이터 확보는 우리나라의 우주 방사선 연구 기반으로 사용될 수 있다. 그리고 부탑재체인 초소형 플럭스게이트 센서 MAG (a miniaturized fluxgate MAGnetometer)를 이용하여 근지구 자기장 데이터를 측정한다. 우주탐사에 있어 천체의 자기장 연구는 우주환경의 변화를 연구하는데 가장 중요한 요소일 뿐만 아니라 태양계 천체의 경우 탄생과 진화에 중요한 단서를 제공하는 인자로, 본 연구를 통해 지구가 아닌 다른 천체에 대한 자기장 측정의 사전연구로 활용될 수 있다. 그림 3은 개발 완료된 SIGMA의 Flight Model이며, 표 2에 SIGMA의 사양을 나타내었다.
<table>
<thead>
<tr>
<th>List</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbit</td>
<td>Altitude: 450 - 700 km</td>
</tr>
<tr>
<td>Launch</td>
<td>Schedule: 1 Q, 2017</td>
</tr>
<tr>
<td></td>
<td>Launch vehicle: SpaceX, Falcon 9</td>
</tr>
<tr>
<td>Mission life time</td>
<td>3 Months</td>
</tr>
<tr>
<td>TEPC specification</td>
<td>Range: 0.2 - 300 keV/um</td>
</tr>
<tr>
<td>(Primary payload)</td>
<td>LET resolution: 23.5 % @5.4 MeV</td>
</tr>
<tr>
<td>MAG specification</td>
<td>Range: ±65536 nT</td>
</tr>
<tr>
<td>(Secondary payload)</td>
<td>Resolution: 1 nT</td>
</tr>
<tr>
<td>Communication</td>
<td>VHF (Uplink), UHF (Downlink)</td>
</tr>
<tr>
<td>Attitude</td>
<td>Nadir mode (Point to Earth)</td>
</tr>
<tr>
<td>Power generation</td>
<td>3399 mW (per 1 orbit)</td>
</tr>
</tbody>
</table>
제 2 장. 큐브위성의 통신 시스템 현황

2.1 큐브위성의 통신 시스템 현황

1 장의 큐브위성 발사 현황을 토대로 2011 년부터 2015 년까지 발사된 큐브위성의 통신 시스템 중 주파수와 데이터 전송속도를 따로 나타내었다 (그림 4, 5). 5 년간 발사된 위성 중 Mission status 레벨이 3 이상인 위성의 통신 시스템을 조사하였다. 모두 다운링크이며 주파수는 대역으로, 데이터 전송속도는 bps (bit per second) 단위로 나타내었다. 위성은 목적에 따라 데이터 처리량이 다르고, 이에 사용하는 주파수 대역과 데이터 전송속도 역시 다르다. 위성의 주파수 대역은 용도나 편리성에 따라 번드로 분류하였으며 관용적으로 구분하여 사용한다. 위성 주파수 밴드의 상세 분류는 표 3에 나타내었다.

데이터 전송속도의 경우, 1200 bps 와 9600 bps 가 대부분 높은 비율을 차지하며, 점차 다양한 전송속도를 가진다. 2014 년과 2015 년 역시 여러 기의 Flock 위성 발사로 인하여 40 Mbps 이상 전송속도의 비율이 매우 높아진 것을 확인할 수 있다.
표 3 위성 주파수 대역 분류

<table>
<thead>
<tr>
<th>Band</th>
<th>Frequency range</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>3 – 30 MHz</td>
</tr>
<tr>
<td>VHF</td>
<td>30 – 300 MHz</td>
</tr>
<tr>
<td>UHF</td>
<td>300 – 1000 MHz</td>
</tr>
<tr>
<td>L Band</td>
<td>1 – 2 GHz</td>
</tr>
<tr>
<td>S Band</td>
<td>2 – 4 GHz</td>
</tr>
<tr>
<td>C Band</td>
<td>4 – 8 GHz</td>
</tr>
<tr>
<td>X Band</td>
<td>8 – 12 GHz</td>
</tr>
<tr>
<td>Ku Band</td>
<td>12 – 18 GHz</td>
</tr>
<tr>
<td>K Band</td>
<td>18 – 27 GHz</td>
</tr>
<tr>
<td>Ka Band</td>
<td>27 – 40 GHz</td>
</tr>
<tr>
<td>V Band</td>
<td>40 – 75 GHz</td>
</tr>
<tr>
<td>W Band</td>
<td>75 – 110 GHz</td>
</tr>
<tr>
<td>mm Band</td>
<td>110 – 300 GHz</td>
</tr>
</tbody>
</table>

2.2 과학임무 목적의 큐브위성 통신 시스템

그림 4 발사된 큐브위성의 주파수 대역 현황 (2011 – 2015 년)
그림 5 발사된 큐브위성의 데이터 통신속도 현황 (2011 - 2015 년)
그림 6 과학 임무 목적인 큐브위성의 주파수 현황 (2011 - 2015 년)
그림 7 과학임무 목적인 큐브위성의 데이터 통신속도 현황 (2011 – 2015 년)
제 3 장. SIGMA의 통신 시스템

3.1 통신 시스템

위성 통신 시스템은 크게 우주 부분 (Space segment)과 지상 부분 (Ground segment)으로 구분된다. 우주 부분은 위성과 위성의 송수신을 위해 탑재된 장비들을 포함한다. 지상 부분은 모든 지상국을 포함하며, 이 지상국은 목적에 따라 다양한 형태를 가진다. 지상국으로부터 송신된 무선파가 위성에 수신되는 통신 링크를 업링크 (Uplink)라 하고, 위성이 지상국 방향으로 송신하는 링크를 다운링크 (Downlink)라고 부른다.

3.1.1 통신 링크

SIGMA의 통신 시스템은 크게 위성과 지상국으로 구분할 수 있다. 업링크 중심 주파수로는 VHF 대역의 145.210 MHz, 다운링크 중심 주파수로 UHF 대역의 435.780 MHz를 사용한다. SIGMA와의 통신에 사용되는 주파수는 모두 아마추어 대역으로, 2016년 현재 국제 전기 통신 연합(International Telecommunication Union; ITU)에 위성망 국제등록이 진행 중이다.

데이터 통신속도는 업링크, 다운링크 각각 1200 bps, 9600 bps이고 통신 프로토콜은 AX.25를 사용한다. 큐브위성의 경우, 중·대형급 인공위성과 비교하였을 때 대량의 데이터를 보내지 않으므로 일반적으로 큐브위성의 다운링크에서 데이터 통신속도는 1200 bps와 9600 bps를 사용한다.

업링크의 데이터 변조 방식은 AFSK (Audio Frequency Shift Keying)로, 반송파의 크기와 위상을 고정시킨 상태에서 오디오 톤의 주파수의 변화로 디지털 데이터가 표현되는 주파수 천이 변조 방식의 한 종류이다. 2진 데이터 ‘0’은 ‘mark’, 2진 데이터 ‘1’은 ‘space’로 표현한다. 다운링크는 BPSK (Binary Phase Shift Keying)를 데이터 변조 방식으로 가진다. 이는 위상 천이 변조 방식에 해당되며, 반송파의 크기와 주파수를 고정시킨 상태에서 위상의 변화를 통해
데이터를 전송하는 방식이다. 반송파의 위상각이 0°인 경우에 2진 데이터 ‘0’을 전송하고, 180°인 경우 2진 데이터 ‘1’을 전송한다.

그림 8은 SIGMA의 통신 시스템 구성도이며 표 4에 SIGMA의 통신 시스템 사양을 정리하였다.

그림 8 SIGMA의 통신 시스템 구성도
<table>
<thead>
<tr>
<th>List</th>
<th>Uplink</th>
<th>Downlink</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>145.210 MHz</td>
<td>435.780 MHz</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>30 kHz</td>
<td>30 kHz</td>
</tr>
<tr>
<td>Data rate</td>
<td>1200 bps</td>
<td>9600 bps</td>
</tr>
<tr>
<td>Modulation</td>
<td>AFSK</td>
<td>BPSK</td>
</tr>
<tr>
<td>Data</td>
<td>Command</td>
<td>Beacon, Housekeeping,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mission data</td>
</tr>
<tr>
<td>Protocol</td>
<td>AX.25</td>
<td>AX.25</td>
</tr>
<tr>
<td>CubeSat</td>
<td>Whip antenna</td>
<td>Whip antenna</td>
</tr>
<tr>
<td>Antenna type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground station</td>
<td>Yagi antenna</td>
<td>Yagi antenna</td>
</tr>
<tr>
<td>Antenna type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polarization</td>
<td>Linear</td>
<td>Linear</td>
</tr>
</tbody>
</table>
3.1.2 하드웨어

큐브위성 트랜시버

위성에 탑재된 트랜시버 보드는 ISIS (Innovative Solutions In Space) 사 (社)의 TRXVU 이다. VHF 대역의 AFSK 수신과 UHF 대역의 BPSK 송신이 가능한 Full-Duplex 트랜시버이다. 데이터 송수신시 업링크는 일반 AFSK 신호이나 다운링크는 스크램블 된 BPSK 신호이다. 위성 내부 스택 (Avionics stack)의 가장 윗부분에 트랜시버 보드가 위치하며 OBC (On Board Computer), 안테나 모듈과 연결되어 있다. 다음의 그림 9 는 ISIS 사의 TRXVU 보드이고, 표 5 는 TRXVU 의 주요 RF 인터페이스를 정리한 것이다.

그림 9 ISIS 사의 TRXVU (Top view)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uplink</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulation</td>
<td>AFSK</td>
<td></td>
</tr>
<tr>
<td>Frequency deviation</td>
<td>3 kHz</td>
<td></td>
</tr>
<tr>
<td>Scrambling polynomial</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Protocol</td>
<td>AX.25</td>
<td></td>
</tr>
<tr>
<td>Maximum frame payload</td>
<td>200</td>
<td>Default value.</td>
</tr>
<tr>
<td>size</td>
<td></td>
<td>Specified in option sheet.</td>
</tr>
<tr>
<td>Downlink</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulation</td>
<td>BPSK</td>
<td></td>
</tr>
<tr>
<td>Pulse shaping</td>
<td>Raised Cosine</td>
<td></td>
</tr>
<tr>
<td>Roll-off factor</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Scrambling polynomial</td>
<td>$1 + X_{12} + X_{17}$</td>
<td>G3RUH scrambling</td>
</tr>
<tr>
<td>Protocol</td>
<td>AX.25 connectionless</td>
<td>Only UI frames supported</td>
</tr>
<tr>
<td>Maximum frame payload</td>
<td>235</td>
<td>Default value.</td>
</tr>
<tr>
<td>size</td>
<td></td>
<td>Specified in option sheet.</td>
</tr>
</tbody>
</table>
큐브위성 안테나

SIGMA 는 안테나로 ISIS 사의 ISIS.ANTS.UM.001 을 사용한다. VHF 대역과 UHF 대역의 주파수 송수신이 가능하고, I2C 를 사용하는 다이폴 안테나이다. 다이폴 안테나는 두 개의 도선을 연결하여 전파를 송수신하는 안테나로, 안테나의 전체 길이가 반송파 파장의 1/2 이며 중앙에서 급전한다. 또한 모든 안테나의 기본이 되는 안테나로서, 단파대용의 안테나 등에서 사용된다. SIGMA 에는 그림 10 과 같이 안테나가 큐브위성의 탑 샤시에 부착되어 한 방향씩 사출되는 형태이다. 4 개의 휘 (Whip) 안테나가 하우징 안쪽에 밀려진 상태로 내장되어 있고, 다이나마 (Dyneema) 합사로 만들어진 번 (burn) 와이어가 리드를 잡아준다. 안테나 사출 시에는 자향에 열이 가해져 와이어가 끌어지고, 리드가 열리며 안테나가 펼진다. VHF 안테나 한 쌍과 UHF 안테나 한 쌍이 모듈을 이루고 있다. 안테나 모듈의 사양은 표 6 에 나타내었다.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Characteristics</td>
<td></td>
</tr>
<tr>
<td>Qualified operational temperature range</td>
<td>-20 to +60 °C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-50 to +85 °C (RH<60 %)</td>
</tr>
<tr>
<td>Electrical Characteristics</td>
<td></td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>3.0 V to 3.6 V (3.3 V nominal) 5.0 V (on customer request)</td>
</tr>
<tr>
<td>Typical current consumption (antennas stowed)</td>
<td>9 mA @ 20 °C</td>
</tr>
<tr>
<td>Typical current consumption (antennas deployed)</td>
<td>8 mA @ 20 °C</td>
</tr>
<tr>
<td>Typical deployment current (for each element)</td>
<td>0.56 A @ 3.3 V</td>
</tr>
<tr>
<td></td>
<td>0.30 A @ 5.0 V</td>
</tr>
<tr>
<td>Typical deployment duration (per antenna at temp >0 °C)</td>
<td>< 3 s</td>
</tr>
<tr>
<td>Safety Time limit</td>
<td>30 s</td>
</tr>
<tr>
<td>Physical Characteristics</td>
<td></td>
</tr>
<tr>
<td>Dimensions (Main)</td>
<td>98 x 98 mm</td>
</tr>
<tr>
<td>Dimensions (Extending fasteners)</td>
<td>102 x 102 mm</td>
</tr>
<tr>
<td>External height</td>
<td>6 mm</td>
</tr>
<tr>
<td>Internal envelope</td>
<td>3.0 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>89 g</td>
</tr>
<tr>
<td>RF Characteristics</td>
<td></td>
</tr>
<tr>
<td>Antenna Return Loss at resonance frequency (with antenna deployed)</td>
<td>< -10 dB</td>
</tr>
</tbody>
</table>
3.2 지상국

위성과의 통신을 위한 지상국은 일반적으로 안테나 서브 시스템, 위성 추적 시스템, 송신부, 그리고 수신부를 포함한다. 또한 지상망 네트워크와의 인터페이스에 사용되는 장비와 여러 가지 모니터링 장비, 이러한 장비들을 작동시키기 위한 전력공급부도 포함된다. 지상국의 특성은 지상국이 제공해야 할 서비스에 따라 다르며 위성에서 복사되는 신호의 세기에 따라 변한다. 그림 11은 지상국의 일반적인 구성이다. SIGMA의 지상국은 경희대학교 천문대 내에 설치되어 있으며 위의 시스템들을 모두 포함하고 있어 위성과의 송수신이 가능하다.

그림 11 지상국의 일반적인 구성

부가적인 장비로는 Ettus Research사의 USRP B200을 사용한다. USRP(Universal Software Radio Peripheral)는 PC에서 구동되는 트랜시버로, 간편한 무선 신호 송수신과 경제적인 소프트웨어 구현이 가능하다. USRP는 SIGMA에서 사용하는 주파수 대역에서 통신이 가능하나 주 장애로 사용되는 트랜시버보다 송신 전력이 상대적으로 작아 근거리 통신 실험에 주로 사용한다.
그림 12 경희대학교 지상국 내의 RF 장비 구성
지상국에서 위성과의 통신에 사용하는 소프트웨어는 대부분이 프리웨어 기반이다. 위성의 궤도 추적을 위해 사용하는 HRD (Ham Radio Deluxe)는 2003 년에 Peter (PH1PH)와 Simon (HB9DRV)에 의하여 개발되었고 현재 유료 버전을 배포 중이다. 로테이터 컨트롤러와 PC 를 연결하여 안테나를 제어하고, 트랜시버 제어 및 지정한 위성과의 교신 가능 시간과 그에 따른 위성 항각의 예측이 가능하다. 경희대학교 지상국에서는 현재 무료 배포용인 5.0 버전을 사용 중이다. 다음의 그림 13은 HRD 의 실행 화면이다.

그림 13 HRD 실행 화면 (차례로 트랜시버 제어, 로테이터 제어, 위성 트래킹)
위성으로의 명령 송신에 사용되는 소프트웨어는 Commander 로, SIGMA 팀에서 직접 개발한 C 언어 기반의 프로그램이다. TNC 를 연결한 상태로 사용하며 업링크에 필요한 명령들이 프로그램상에 미리 입력되어 있어 버튼 클릭과 같은 간단한 조작으로 위성 제어가 가능하다. 그림 14 는 Commander 의 실행 화면이다.

그림 14 Commander 실행 화면
위성으로부터 데이터 수신 시에는 SDR Sharp, Soundmodem, AGW OnlineKiss, 그리고 TMP (Telemetry Monitoring Program)를 사용한다. SDR (Software Defined Radio) Sharp 은 PC 기반의 DSP (Digital Signal Processing) 어플리케이션으로 Youssef Touil 이 개발한 프리웨어이다. 지상국의 UHF 야기 안테나와 연결된 FUNcube Dongle Pro+로 들어오는 신호를 SDR Sharp 에서 수신하고, 주변의 노이즈 세기를보다 수신 신호의 세기가 강할 경우에 프로그램 상에서 신호를 식별할 수 있다. 또한 프로그램 상에서 수신 주파수 조절이나 신호에 따른 변조 방식 선택이 가능하다. 그림 15 는 SDR Sharp 으로 수신한 신호의 모습이다.

그림 15 SDR Sharp 을 통한 신호 수신
Soundmodem은 사운드카드를 모뎀으로 사용하는 Dual port Packet-Radio TNC이므로, Andy (UZ7HO)에 의해 개발되었다. 수신하고자 하는 신호에 따라 다양한 변조 방식과 데이터 전송 속도 설정이 가능하다. 본 연구에서는 프로그램 상에서 FUNcube Dongle로 수신한 신호의 데이터를 ASCII 값으로 확인하기 위한 목적으로 사용하였다. 현재 경희대학교 지상국에서 사용하는 Soundmodem은 SIGMA의 스크램블 된 BPSK 신호에 최적화된 버전으로, 프로그램 개발자에 의해 업데이트 되었다. 그림 16은 Soundmodem에서 SIGMA의 비컨(Beacon)신호를 수신한 화면이다.

그림 16 Soundmodem으로 SIGMA의 비컨 신호를 수신한 화면
Soundmodem 으로 들어온 신호는 AGW OnlineKiss 로 연결되어 Hex 값으로 Raw 데이터가 보여진다. AGW OnlineKiss 는 AGW Packet Engine 을 통하여 데이터를 수신하고, 이를 Hex dump 로 나타내며 KISS 파일 형태로 저장한다. 따라서 Soundmodem 에서 먼저 신호를 수신한 다음 AGW OnlineKiss 에서 위성의 Raw 데이터를 확인할 수 있다. 그림 17 은 AGW OnlineKiss 를 통한 데이터 수신 화면이다.

그림 17 AGW OnlineKiss 에서 수신한 데이터
데이터 수신 시 사용하는 SDR Sharp, Soundmodem 두 가지 소프트웨어를 토대로 SIGMA 팀에서는 JAVA 기반의 TMP (Telemetry Monitoring Program)를 개발하였다. AGW OnlineKiss 에서는 Raw 데이터가 보여지므로 수신 데이터의 빠른 분석이 어렵다. 따라서 TMP 를 이용할 경우, 위성의 상태값을 포함한 수신 데이터가 보기 쉽게 정리되어 빠르게 파악할 수 있다 (그림 18). TMP 에서 보여지는 분석 데이터는 위성으로부터 신호 수신 시 실시간으로 확인이 가능하다. SIGMA 팀에서는 경희대학교 지상국뿐만 아니라 다른 아마추어 무선국에서도 SIGMA 의 데이터를 확인할 수 있도록 TMP 를 온라인 상에서 무료로 배포할 계획이다.

그림 18 TMP 로 SIGMA 의 하우스키핑 데이터를 수신한 화면
제 4 장. SIGMA 통신 테스트 결과

4.1 링크 해석 (Link Budget)

링크 해석은 위성과 지상국 간의 통신 경로에 대해 통신 시스템 사양 및 채널의 상태 등 여러 가지 변수들을 확인하고, 이득 및 손실 요인들에 의한 신호 전력의 증감을 대수적으로 간단히 계산하여 링크 신뢰도의 여유 즉, 링크 마진을 구하는 작업이다. 이는 지상국과 위성 간 최대 거리에서 원하는 링크가 신뢰 수준에 이르도록 설계하는 것이 요점이다. 링크마진의 계산 결과가 3 dB 이상의 값을 가질 때 통신이 가능하다고 판단하며, 본 연구에서는 링크 해석을 통해 SIGMA의 통신 가능 여부를 이론적으로 판단하였다.

4.1.1 업링크

SIGMA의 업링크 마진 계산을 위해서는 업링크 통신 시스템에 따른 요구조건이 필요하다. 위성의 궤도정보는 예상 고도인 720 km, 최소 양각 10 °로 가정하였다. 업링크 주파수는 중심 주파수인 145.210 MHz를 사용하고, 데이터 전송속도는 1200 bps, 송신기인 지상국 내 트랜시버의 송신전력은 20 W로 두었다. 안테나는 지상국의 VHF 야기 안테나와 위성의 VHF 흡 안테나의 사양을 적용하였다. 안테나 이득이나 라인 손실 값은 각각의 해당 문서를 참고하여 입력하였다. 다음의 표 7은 완활한 업링크 통신을 위한 요구조건을 나타낸다.
표 7 업링크 요구 조건

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Earth Orbit</td>
<td>km</td>
<td>750</td>
</tr>
<tr>
<td>Minimum Elevation Angle</td>
<td>degree</td>
<td>10</td>
</tr>
<tr>
<td>Frequency</td>
<td>MHZ</td>
<td>145.210</td>
</tr>
<tr>
<td>Tx Power</td>
<td>W</td>
<td>20</td>
</tr>
<tr>
<td>Tx Antenna Diameter</td>
<td>m</td>
<td>3.7</td>
</tr>
<tr>
<td>Data rate</td>
<td>bps</td>
<td>1200</td>
</tr>
<tr>
<td>Required E_b/N_0</td>
<td>dB</td>
<td>23.2</td>
</tr>
<tr>
<td>Antenna Efficiency</td>
<td>%</td>
<td>55</td>
</tr>
<tr>
<td>Tx Antenna Gain</td>
<td>dBi</td>
<td>17.2</td>
</tr>
<tr>
<td>Antenna Gain/Noise Temperature</td>
<td>dB/K</td>
<td>-29.5</td>
</tr>
<tr>
<td>Bit Error Rate</td>
<td></td>
<td>1.00E-05</td>
</tr>
<tr>
<td>Implementation Loss</td>
<td>dB</td>
<td>2.3</td>
</tr>
<tr>
<td>Free Space Loss</td>
<td>dB</td>
<td>142.8</td>
</tr>
<tr>
<td>Total Loss</td>
<td>dB</td>
<td>147.8</td>
</tr>
</tbody>
</table>

표 7에서 주어진 요구조건을 토대로 링크 마진을 계산한 결과, 표 8과 같이 링크 마진 19.70 dB 를 얻었다. 따라서 업링크에서는 기준 수치인 3 dB 이상의 링크 마진을 가지므로 지상국과 위성 간의 원활한 통신이 가능할 것으로 판단할 수 있다. 또한 지상국 트랜시버의 송신 전력을 90 W 까지 높일 수 있으므로 이에 따라 링크 마진을 약 6.5 dB 정도 더 증가시킬 수 있다.
표 8 업링크 해석 결과

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitter Power</td>
<td>dBW</td>
<td>13.01</td>
</tr>
<tr>
<td>Equivalent Isotropic Radiated Power</td>
<td>dBW</td>
<td>24.69</td>
</tr>
<tr>
<td>Bit rate</td>
<td>dBs(^{-1})</td>
<td>30.79</td>
</tr>
<tr>
<td>Noise Temperature</td>
<td>dBK</td>
<td>41.91</td>
</tr>
<tr>
<td>Eb/No</td>
<td>dB</td>
<td>45.22</td>
</tr>
<tr>
<td>Peak Receive Antenna Gain</td>
<td>dBi</td>
<td>32.41</td>
</tr>
<tr>
<td>Carrier-to-Noise Density Ratio</td>
<td>dB-Hz</td>
<td>102.65</td>
</tr>
<tr>
<td>Link Margin</td>
<td>dB</td>
<td>19.70</td>
</tr>
</tbody>
</table>
4.1.2 다운링크

다운링크의 링크 마진 계산도 업링크와 마찬가지로 계산을 위한 요구조건이 필요하다. 궤도정보는 업링크와 같은, 중심주파수인 435.780 MHz, 9600 bps의 데이터 전송속도를 사용하였다. 안테나 관련 값은 지상국의 UHF 야기안테나, 위성의 UHF 켓 안테나 사양을 참고하였고, 송신 전력은 큐브위성 트랜시버 보드의 문서를 참고하여 0.5 W으로 입력하였다. 계산시에 사용된 손실 값은 경희대학교 CINEMA 위성의 링크 해석 결과를 참고하여 평균값을 사용하였다. 다음의 표 9에 다운링크의 요구조건을 나타내었다.

표 9 다운링크 요구조건

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Earth Orbit</td>
<td>km</td>
<td>750</td>
</tr>
<tr>
<td>Minimum Elevation Angle</td>
<td>degree</td>
<td>10</td>
</tr>
<tr>
<td>Frequency</td>
<td>MHz</td>
<td>435.780</td>
</tr>
<tr>
<td>Tx Power</td>
<td>W</td>
<td>0.5</td>
</tr>
<tr>
<td>Rx Antenna Diameter</td>
<td>m</td>
<td>6.0</td>
</tr>
<tr>
<td>Data Rate</td>
<td>bps</td>
<td>9600</td>
</tr>
<tr>
<td>Required E_b/N_0</td>
<td>dB</td>
<td>9.6</td>
</tr>
<tr>
<td>Antenna Efficiency</td>
<td>%</td>
<td>55</td>
</tr>
<tr>
<td>Tx Antenna Gain</td>
<td>dBi</td>
<td>0</td>
</tr>
<tr>
<td>Antenna Gain/Noise Temperature</td>
<td>dB/K</td>
<td>-9.6</td>
</tr>
<tr>
<td>Bit Error Rate</td>
<td></td>
<td>1.00E-05</td>
</tr>
<tr>
<td>Implementation Loss</td>
<td>dB</td>
<td>2.3</td>
</tr>
<tr>
<td>Free space Loss</td>
<td>dB</td>
<td>152.3</td>
</tr>
<tr>
<td>Total Loss</td>
<td>dB</td>
<td>157.3</td>
</tr>
</tbody>
</table>
다운링크의 링크마진은 10.24 dB 로, 통신 가능한 여유 범위인 3 ~ 6 dB 를 충분히 만족하는 값이다. 따라서 다운링크의 경우에도 위성과 지상국 간의 원활한 통신이 가능할 것으로 판단된다. 또한 실제 운용 시에는 지상국의 안테나 포인팅이 위성의 실제 궤도상 양각에 따라 달라지며, 계산에 사용된 요구조건인 10 °보다 더 큰 양각을 가지는 경우에는 링크 마진 값이 더 증가할 것으로 예상된다.

표 10 다운링크 해석 결과

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitter Power</td>
<td>dBW</td>
<td>-3.01</td>
</tr>
<tr>
<td>Equivalent Isotropic Radiated Power</td>
<td>dBW</td>
<td>-4.01</td>
</tr>
<tr>
<td>Bit rate</td>
<td>dBs⁻¹</td>
<td>39.82</td>
</tr>
<tr>
<td>Noise Temperature</td>
<td>dBK</td>
<td>56.42</td>
</tr>
<tr>
<td>E₀/N₀</td>
<td>dB</td>
<td>17.84</td>
</tr>
<tr>
<td>Peak Receive Antenna Gain</td>
<td>dBi</td>
<td>46.82</td>
</tr>
<tr>
<td>Carrier-to-Noise Density Ratio</td>
<td>dB-Hz</td>
<td>57.66</td>
</tr>
<tr>
<td>Link Margin</td>
<td>dB</td>
<td>10.24</td>
</tr>
</tbody>
</table>
4.2 Field 테스트

본 연구에서는 큐브위성과 지상국 간의 무선 통신을 통한 데이터 송수신을 확인하기 위하여 크게 두 가지의 Field 테스트를 수행하였다. 첫 번째는 랜[Test] (Lab test; Near-field test)로, 경희대학교 천문대의 실험실 내부에서 위성 통신 시스템의 기본적인 동작을 확인하였다. 랜 테스트에서는 지상국의 트랜시버와 휴대용 안테나를 이용하여 위성으로의 명령 송신과 위성으로부터의 비전 신호 수신 여부를 확인하였다. 두 번째로 Far-field 테스트는 랜 테스트와 마찬가지로 위성과 지상국 간의 기본적인 데이터 송수신을 확인하였다. 위성을 Far-field 거리 계산에 따라 104.59 m 이상에 위치시키고, 지상국 안테나를 포함한 RF 장비를 이용하여 테스트를 수행하였다. 또한 위성이 우주 환경에 노출될 경우에 예상할 수 있는 변수 값들을 계산하여 감소, 위성의 안테나 사출 여부, 위성의 자세, 도플러 주파수 편이 등의 변수를 추가로 적용하여 테스트를 수행하였다.

4.2.1 테스트 개요

안테나를 기준으로 하였을 때, 거리에 따라 주변 공간을 아래와 같이 크게 세 가지 영역으로 구분할 수 있다.

- Reactive near-field region
- Radiating near-field (Fresnel) region
- Far-field (Fraunhofer) region-

Reactive near-field region 은 Reactive field 가 우세한 영역이며 안테나로부터 \(R < 0.62\sqrt{D^3/\lambda} \) (\(R \): 안테나의 최대 크기, \(\lambda \): 파장)거리에 해당된다. Radiating near-field region 은 안테나로부터 \(0.62\sqrt{D^3/\lambda} \leq R < 2D^2/\lambda \) 거리에 해당되는 영역으로 Radiation field 가 우세하고 영역의 범위가 안테나의 크기에 크게 영향을 받는다.
또한 이 영역에서는 거리에 따라 Angular field distribution 이 다르다. 마지막으로 Far-field region 은 Angular field distribution 과 무관한 영역으로 $R > 2D^2/\lambda$ 거리에 해당된다 (그림 19).

그림 19 안테나를 기준으로 거리에 따라 구분된 영역

표 11 은 안테나 길이와 파장에 따른 위의 계산식을 참고하여 지상국과 큐브위성의 안테나를 기준으로 Field 거리를 도출한 결과이다. 그 결과, 지상국 UHF 야기 안테나의 Far-field 거리인 104.59 m 가 가장 큰 값이므로 104.59 m 이상의 거리를 Far-field 영역으로 가정하여 테스트를 수행하였다.
표 11 Far-field 거리 계산 결과

<table>
<thead>
<tr>
<th>Parameter</th>
<th>VHF</th>
<th>UHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>145.210 MHz</td>
<td>435.780 MHz</td>
</tr>
<tr>
<td>Wave length $(\lambda = c/f)$</td>
<td>2.07 m</td>
<td>0.69 m</td>
</tr>
<tr>
<td>GS antenna length</td>
<td>3.7 m</td>
<td>6 m</td>
</tr>
<tr>
<td>Far field</td>
<td>13.25 m</td>
<td>104.59 m</td>
</tr>
<tr>
<td>CubeSat antenna length</td>
<td>0.342 m</td>
<td>0.9 m</td>
</tr>
<tr>
<td>Far field</td>
<td>1.38 m</td>
<td>4.13 m</td>
</tr>
</tbody>
</table>

자유공간손실 (Free Space Path Loss)은 두 안테나 사이의 통신링크에서 송수신 세기의 비율을 뜻한다. 이를 거리와 주파수에 따른 손실값을 다음의 식을 적용하여 계산하였고, 표 12에 각각의 값을 나타내었다.

$$\text{FSPL (dB)} = 32.5 + 20 \log(d) + 20 \log(f)$$

표 12 FSPL 계산 결과

<table>
<thead>
<tr>
<th>Distance</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VHF 145.210 MHz</td>
</tr>
<tr>
<td>450 km (Perigee)</td>
<td>128.75 dB</td>
</tr>
<tr>
<td>720 km (Apogee)</td>
<td>132.84 dB</td>
</tr>
<tr>
<td>0.4 km (Test place)</td>
<td>67.78 dB</td>
</tr>
<tr>
<td>8.7 km (Test place)</td>
<td>94.53 dB</td>
</tr>
</tbody>
</table>
4.2.2 테스트 과정

업링크 테스트에서는 지상국에서 ‘비컨 신호 송신 중지’ 혹은 ‘데이터 통신속도 9600 bps 설정’ 명령을 송신한 후, 위성의 상태값을 읽어서 업링크 명령을 위성이 수신하였는지를 확인하였다. Far-field의 경우, 업링크 테스트에 변수를 추가하여 자유공간손실, 위성 안테나의 사출 상태, 도플러 주파수 편이, 위성의 자세를 고려하였다.

다운링크 테스트에서는 업링크 테스트와 같은 장소에 위성을 위치시키고 큐브위성에서 지상국으로 비컨 데이터와 하우스키핑 데이터를 송신하였다. 그리고 송신한 데이터가 지상국에서 온전하게 수신되는지를 확인하였다. Far-field에서도 마찬가지로 네 가지 변수를 두었다.

테스트 시에 큐브위성은 PC와 연결하여 콘솔 창에서 위성을 제어하고 상태값을 확인하였다. 지상국에는 램 테스트에서 쓰인 휴대용 안테나를 제외하고 모두 위성 운용에 사용되는 장비를 사용하였다. 또한 지상국에서는 SDR Sharp과 Soundmodem, AGW OnlineKiss를 사용하여 디코딩된 데이터를 확인하였다.
4.2.3 랩 테스트 (Near-field Test) 결과

랩 테스트에서는 초기에 지상국의 보조 장비인 USRP를 사용하여 간편하게 위성의 송수신 여부를 확인하였다. 그리고 위성의 정상적인 통신 여부를 확인한 후, 지상국의 트랜시버와 휴대용 안테나를 사용한 테스트를 수행하였다. 그림 20은 랩 테스트의 구축 환경이다.

그림 20 랩 테스트의 구축 환경

테스트 결과, 지상국 장비와 위성 간의 기본적인 근거리 통신에 이상이 없는 것을 확인하였다. 위성의 상태값이 지상국의 명령에 따라 변화하였고, 지상국의 소프트웨어에서도 위성으로부터 송신된 데이터를 문제 없이 수신하였다. 그림 21은 위성과 연결된 PC의 콘솔 모드에서 확인한 하우스키핑 데이터, 그림 22는 Soundmodem와 AGW OnlineKiss를 통해 수신한 비컨 및 하우스키핑 데이터이다.
그림 21 콘솔 모드에서 확인한 위성의 하우스키핑 데이터
그림 22 지상국에서 수신한 비콘 및 하우스키핑 데이터
4.2.4 Far-field 테스트 결과

Far-field 테스트는 표 11의 거리 계산 결과에 따라 경희대학교 천문대(KHAO)에 위치한 지상국에서 약 0.4 km, 8.7 km 떨어진 곳에서 진행하였다. 0.4 km 거리에서 테스트를 하였을 때에는 건물 옥상에 위성을 위치시키고 지상국과 통신하는 방식으로 하였다. 그러나 건물 옥상의 높이가 지상국 야기 안테나가 위치한 곳보다 낮아 8.7 km 떨어진 거리에 위치한 산에서 테스트를 다시 진행하였다. 그림 23은 지상국으로부터 테스트 지점까지의 직선거리를 보여준다.

![그림 23 Far-field 테스트 지점까지의 직선거리 (지도 출처: 네이버)](image)

자유공간손실

위성의 예상 궤도 중 지상국으로부터 가장 먼 거리에 해당되는 720 km 고도를 기준으로 테스트를 수행하였다. 앞서 표 12에서 계산한 거리에 따른 자유공간손실 값을 참고하였을 때, 0.4 km 거리에서는 업링크 65.06 dB, 다운링크 65.05 dB 이상의 감쇠가 추가로 필요하고 8.7 km 거리에서는 업링크 38.31 dB, 다운링크 38.3 dB 이상의 감쇠가 추가로 필요하다. 따라서 테스트에서는 지상국의 트랜시버와 FUNcube Dongle에 감쇠기를 추가로 연결하여 위성과의 통신 여부를 확인하였다. 이 때, 주파수는 중심주파수인
145.210 MHz, 435.780 MHz 로 설정하였다. 그 결과 0.4 km 거리에서는 다운링크에 문제가 없었다. 그러나 업링크에서는 표 13 과 같이 65 dB 의 감쇠기를 추가한 상태인 132.78 dB 이상의 감쇠에서 명령을 송신하였을 때 위성에서 명령 수신이 되지 않았다. 또한 8.7 km 거리에서의 업링크 테스트에서도 40 dB 의 감쇠기를 추가한 134.53 dB 이상의 감쇠에서 명령 수신이 되지 않았다. 이는 720 km 고도에서의 업링크 자유공간손실 값인 132.84 dB 보다 낮은 감쇠 수준이며, 안테나 뒤쪽에 위치하고 있는 천문대의 돔이나 주변의 건물, 산으로 둘러싸인 환경으로 인한 결과로 판단하였다. 따라서 위성이 실제 궤도에서 운용될 때에는 지상국 안테나의 양각이 높아질 것이므로 주변 환경의 영향을 덜 받을 것으로 예상하고, 지상국 트랜시버의 송신전력을 90 W 까지 높이는 방법으로 문제점을 보완할 수 있다.

표 13 자유공간손실에 따른 테스트 결과 (0.4 km)

<table>
<thead>
<tr>
<th>Uplink Attenuation (dB)</th>
<th>Commands (Uplink)</th>
<th>Downlink Attenuation (dB)</th>
<th>Data (Downlink)</th>
</tr>
</thead>
<tbody>
<tr>
<td>97.78</td>
<td>Received</td>
<td>107.33</td>
<td>Received</td>
</tr>
<tr>
<td>117.78</td>
<td>Received</td>
<td>127.33</td>
<td>Received</td>
</tr>
<tr>
<td>122.78</td>
<td>Partially received</td>
<td>132.33</td>
<td>Received</td>
</tr>
<tr>
<td>132.78</td>
<td>Not received</td>
<td>142.33</td>
<td>Received</td>
</tr>
<tr>
<td>142.78</td>
<td>Not received</td>
<td>152.33</td>
<td>Received</td>
</tr>
<tr>
<td>152.78</td>
<td>Not received</td>
<td>162.33</td>
<td>Received</td>
</tr>
</tbody>
</table>
표 14 자유공간손실에 따른 테스트 결과 (8.7 km)

<table>
<thead>
<tr>
<th>Uplink Attenuation (dB)</th>
<th>Commands (Uplink)</th>
<th>Downlink Attenuation (dB)</th>
<th>Data (Downlink)</th>
</tr>
</thead>
<tbody>
<tr>
<td>94.53</td>
<td>Received</td>
<td>104.08</td>
<td>Received</td>
</tr>
<tr>
<td>114.53</td>
<td>Received</td>
<td>124.08</td>
<td>Received</td>
</tr>
<tr>
<td>124.26</td>
<td>Received</td>
<td>134.08</td>
<td>Received</td>
</tr>
<tr>
<td>129.53</td>
<td>Received</td>
<td>139.08</td>
<td>Received</td>
</tr>
<tr>
<td>134.53</td>
<td>Not received</td>
<td>144.08</td>
<td>Received</td>
</tr>
<tr>
<td>144.53</td>
<td>-</td>
<td>154.08</td>
<td>Partially received</td>
</tr>
<tr>
<td>149.53</td>
<td>-</td>
<td>159.08</td>
<td>Partially received</td>
</tr>
</tbody>
</table>
위성 안테나 사출 여부 및 위성의 자세

위성이 우주에서 실제로 운용될 때, 하우징 안쪽으로 말려있는 위성의 안테나가 사출되지 않았을 경우를 고려하여 테스트하였다. 먼저 0.4 km 거리에서 위성 안테나 사출 여부에 따른 테스트 결과를 표 15 에 나타내었다. 위성의 안테나가 한쪽만 사출되었을 때에 지상국에서 보낸 명령을 수신하였고, 안테나가 모두 사출되지 않았을 때에는 일부 데이터만 수신하는 것을 확인하였다. 안테나가 모두 사출되지 않았을 때 통신이 되지 않는 것이 정상이지만, 위성의 RSSI (Received Signal Strength Indication) 값을 확인하였을 때 안테나가 모두 사출된 경우보다 사출되지 않은 경우에 30 dB 감소된 것으로 보아 위성이 더 먼 거리에 위치한다면 지상국과의 통신이 어려울 것으로 예상된다.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Status</th>
<th>Commands or Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>CubeSat</td>
<td>Not deployed</td>
<td>Partially received</td>
</tr>
<tr>
<td>Antenna Deployment</td>
<td>Deployed one side only</td>
<td>Received</td>
</tr>
<tr>
<td></td>
<td>0˚</td>
<td>Received</td>
</tr>
<tr>
<td></td>
<td>30˚</td>
<td>Received</td>
</tr>
<tr>
<td></td>
<td>60˚</td>
<td>Received</td>
</tr>
<tr>
<td></td>
<td>90˚</td>
<td>Received</td>
</tr>
<tr>
<td>CubeSat Attitude</td>
<td>0˚</td>
<td>Received</td>
</tr>
<tr>
<td></td>
<td>30˚</td>
<td>Received</td>
</tr>
<tr>
<td></td>
<td>60˚</td>
<td>Received</td>
</tr>
<tr>
<td></td>
<td>90˚</td>
<td>Received</td>
</tr>
</tbody>
</table>

표 15의 하단 부분은 위성의 자세를 변수로 놓았을 때의 테스트 결과이다. 그림 24의 위성 Z축을 기준으로 0˚에서 90˚까지 30˚씩 방향을 바꾸어 명령을 수신하였고, 그 결과 모든 경우에서 위성과 지상국 간의 송수신 여부를 확인하였다.
 다음의 표 16은 8.7 km 거리에서의 테스트 결과이다. 이 테스트에서는 지상국의 야기 안테나에 35 dB 감쇠기를 연결한 상태로 진행하였다. 먼저 지상국 안테나의 포인팅 각도에 따른 송수신 여부를 확인하였다. VHF, UHF 야기 안테나를 위성의 위치가 한 방향에 포인팅한 각도를 기준점으로 두고, 위성과의 송수신이 되지 않을 때까지의 안테나 방위각을 확인하였다. 그 결과, VHF 안테나는 기준점으로부터 약 ± 5°, UHF 안테나는 기준점으로부터 약 ± 40°의 방위각에서 송수신이 가능하였다. 이는 UHF 안테나의 붐 길이가 VHF 안테나의 붐 길이보다 길어 주변 환경의 영향을 덜 받고, 주파수 대역으로 인한 안테나의 세부 사양이 다르기 때문이다.

그림 24 Far-field 테스트에서의 큐브위성 자세 기준
표 16 지상국 안테나 포인팅과 위성의 자세에 따른 결과 (8.7 km)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Status</th>
<th>Commands (Uplink)</th>
<th>Status</th>
<th>Data (Downlink)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS</td>
<td>42 ° – 126 °</td>
<td>Received</td>
<td>55 ° – 65 °</td>
<td>Received</td>
</tr>
<tr>
<td>Antenna Angle</td>
<td>(center: 82 °)</td>
<td></td>
<td>(center: 60 °)</td>
<td></td>
</tr>
<tr>
<td>CubeSat</td>
<td>- 90 °</td>
<td>Received</td>
<td>- 90 °</td>
<td>Not received</td>
</tr>
<tr>
<td>Attitude</td>
<td>- 60 °</td>
<td>Partially received</td>
<td>- 60 °</td>
<td>Partially received</td>
</tr>
<tr>
<td></td>
<td>- 45 °</td>
<td>Partially received</td>
<td>- 45 °</td>
<td>Partially received</td>
</tr>
<tr>
<td></td>
<td>- 30 °</td>
<td>Partially received</td>
<td>- 30 °</td>
<td>Received</td>
</tr>
<tr>
<td></td>
<td>0 °</td>
<td>Received</td>
<td>0 °</td>
<td>Received</td>
</tr>
<tr>
<td></td>
<td>30 °</td>
<td>Partially received</td>
<td>30 °</td>
<td>Received</td>
</tr>
<tr>
<td></td>
<td>45 °</td>
<td>Partially received</td>
<td>45 °</td>
<td>Partially received</td>
</tr>
<tr>
<td></td>
<td>60 °</td>
<td>Partially received</td>
<td>60 °</td>
<td>Not received</td>
</tr>
<tr>
<td></td>
<td>90 °</td>
<td>Received</td>
<td>90 °</td>
<td>Not received</td>
</tr>
</tbody>
</table>

그림 25 지상국 야기 안테나의 포인팅 방위각
도플러 주파수 편이

위성이 지구 주위를 공전하며 신호를 송신할 때, 위성의 속도에 따라 지상국에서의 수신 주파수가 변화하게 된다. 위성이 지상국과 가까워지면 수신 주파수가 중심 주파수보다 크고, 멀어지면 중심 주파수보다 작아진다. 정지궤도 위성의 경우 도플러 변위가 크게 작용하지 않지만 저궤도 위성의 경우 그 영향을 무시하기 어렵다.

SIGMA 는 저궤도 위성이므로 예상 고도가 720 km 일 때 도플러 효과에 의한 주파수의 범위는 표 17 의 720 km 계산 결과와 같다. 따라서 업링크 테스트 시에는 지상국 트랜시버의 주파수를 1 kHz 단위로 바꾸며 명령을 송신하였고, 다운링크 테스트 시에는 FUNcube Dongle 의 수신 주파수를 SDR Sharp 상에서 1 kHz 단위로 바꾸며 위성으로부터 비컨 신호를 수신하였다. 그 결과, 계산한 도플러 주파수 범위를 포함한 주파수에서 송수신을 모두 확인하였다.

표 17 도플러 주파수 편이에 따른 결과

<table>
<thead>
<tr>
<th>Field Distance (km)</th>
<th>Frequency Range (MHz)</th>
<th>Commands or Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>720 (Standard)</td>
<td>145.206 – 145.214</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>145.205 – 145.215</td>
<td>Received</td>
</tr>
<tr>
<td>8.7</td>
<td>145.199 – 145.221</td>
<td>Received</td>
</tr>
<tr>
<td>720 (Standard)</td>
<td>435.769 – 435.791</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>435.764 – 435.792</td>
<td>Received</td>
</tr>
<tr>
<td>8.7</td>
<td>435.761 – 435.782</td>
<td>Received</td>
</tr>
</tbody>
</table>
4.3 지상국 장비 테스트

지상에서의 테스트는 지상국 주변 환경에 따라 그 결과에 영향을 받는다. 안테나 주변의 건물과 같은 다른 전파 방해 요인이 위성과의 통신을 어렵게 한다. 따라서 이러한 지상 테스트의 한계를 극복하기 위하여 실제 우주에서 운용되고 있는 위성과의 송수신 테스트로 지상국의 장비와 시스템을 점검하고, 운용 가능 여부를 확인하였다.
4.3.1 테스트 개요 및 과정

테스트에 사용된 위성은 FO-29 (Fuji-OSCAR29, JAS-2)와 SO-50 (Saudi-OSCAR 50, Saudisat-1C)이다. 두 위성 모두 SIGMA 와 같이 아마추어 대역 주파수이며 업링크 VHF 대역, 다운링크 UHF 대역을 사용한다. 또한 위성 각각 트랜스폰더 (Transponder)와 FM 리피터 (FM Repeater)를 탑재하고 있어 지상국에서 음성신호를 송신한 후 바로 그 음성신호의 수신이 가능하다. 표 18 에 SIGMA 와 두 위성의 주파수 및 궤도 정보를 비교하였다.

<table>
<thead>
<tr>
<th>List</th>
<th>SIGMA</th>
<th>FO-29</th>
<th>SO-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uplink</td>
<td>145.210 MHz (AFSK)</td>
<td>Transponder:</td>
<td>FM Repeater:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>145.900 – 146.000 MHz</td>
<td>145.850 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(SSB, CW)</td>
<td>(FM, 67 Hz PL Tone)</td>
</tr>
<tr>
<td>Downlink</td>
<td>435.780 MHz (BPSK)</td>
<td>Beacon:</td>
<td>FM Repeater:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>435.795 MHz (CW)</td>
<td>436.800 MHz (FM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transponder:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>435.800 – 435.900 MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(SSB, CW)</td>
<td></td>
</tr>
<tr>
<td>Period</td>
<td>93 min</td>
<td>106.43 min</td>
<td>97.95 min</td>
</tr>
<tr>
<td>Perigee ×</td>
<td>450 × 720 km</td>
<td>800 × 1323 km</td>
<td>603 × 713 km</td>
</tr>
<tr>
<td>Apogee</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
지상국 장비 테스트에는 TNC 를 제외한 모든 RF 장비들이 사용되었고, 음성신호 송신을 위한 Kenwood 사의 마이크 (MC-90)를 포함한다. 그리고 위성 자동 트래킹을 위해 HRD 를 이용하여 지상국 안테나와 로테이터를 PC 와 연동시켰다. 대상 위성과 지상국이 이루는 사이각이 10 ° 이상일 때 테스트를 진행하였다. 다음의 그림 0 에 테스트 과정을 도식화하였고, 표 14 에 테스트 일시와 위성의 최대 사이각을 나타내었다.

그림 26 지상국 장비 테스트 효율도

표 19 테스트 일시

<table>
<thead>
<tr>
<th>FO-29</th>
<th>Maximum Inclination (deg)</th>
<th>SO-50</th>
<th>Maximum Inclination (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td></td>
<td>Date</td>
<td></td>
</tr>
<tr>
<td>2015. 12. 22</td>
<td>22.2</td>
<td>2016. 01. 15</td>
<td>13.7</td>
</tr>
<tr>
<td>2015. 12. 30</td>
<td>32.1</td>
<td>2016. 01. 19</td>
<td>40.9</td>
</tr>
<tr>
<td>2016. 10. 19</td>
<td>18.5</td>
<td>2016. 01. 27</td>
<td>40.2</td>
</tr>
<tr>
<td>2016. 10. 19</td>
<td>89.1</td>
<td>2016. 10. 19</td>
<td>29.2</td>
</tr>
</tbody>
</table>
4.3.2 FO-29

일본에서 개발한 FO-29 위성은 1996 년 발사 후, 현재까지 운용되고 있다. 업링크와 다운링크 모두 SIGMA 와 동일한 대역을 가지며 세부 사양은 다음의 표 20 과 같다.

표 20 FO-29 의 사양

<table>
<thead>
<tr>
<th>Name</th>
<th>Fuji-OSCAR 29 (JAS-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORAD</td>
<td>24278</td>
</tr>
<tr>
<td>COSPAR designation</td>
<td>1996-046-B</td>
</tr>
<tr>
<td>Inclination (degree)</td>
<td>98.542</td>
</tr>
<tr>
<td>RAAN</td>
<td>241.960</td>
</tr>
<tr>
<td>Eccentricity</td>
<td>0.0351436</td>
</tr>
<tr>
<td>ARGP</td>
<td>103.754</td>
</tr>
<tr>
<td>Orbit per day</td>
<td>13.52913747</td>
</tr>
<tr>
<td>Period</td>
<td>1 h 46 m 26 s (106.43 Min)</td>
</tr>
<tr>
<td>Semi-major axis</td>
<td>7440 km</td>
</tr>
<tr>
<td>Perigee x apogee</td>
<td>800 x 1323 km</td>
</tr>
<tr>
<td>Drag factor</td>
<td>0.000002448 1/ER</td>
</tr>
<tr>
<td>Mean anomaly</td>
<td>260.297</td>
</tr>
<tr>
<td>Weight</td>
<td>50 kg</td>
</tr>
<tr>
<td>Frequency</td>
<td>Uplink: Transponder: 145.900 – 146.000 MHz (SSB, CW)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Downlink: Beacon: 435.795 MHz (CW)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transponder: 435.800 – 435.900 MHz (SSB, CW)</td>
</tr>
<tr>
<td>Mode and Antenna polarization</td>
<td>V : RHCP</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U : RHCP</td>
</tr>
</tbody>
</table>
테스트에서는 먼저 CW 모드의 비컨 신호를 수신하였고, 수신에 성공한 후 트랜스폰더를 이용하여 음성신호를 송수신 하였다. 그림 27은 2015년 12월 30일 테스트에서 SDR Sharp에 수신된 비컨 신호이다. 도플러 주파수 편이로 인해 수신 주파수가 계속 변화하였기 때문에 파형을 보고 주파수를 조절하였다. 그리고 SDR Sharp을 통해 녹음된 비컨 신호의 데이터 구별을 위하여 Morse View라른 소프트웨어를 사용하여 신호를 재생하였다.

그림 27 SDR Sharp으로 FO-29의 비컨 신호를 수신한 화면
프로그램 상에서 재생되는 신호 파형의 길이를 비교하여 CW 신호를 구분할 수 있고 이 때, 신호는 명확하게 구분이 가능한 것을 기준으로 나열하였다. 그림 28은 Morse View를 통해 재생시킨 비컨 신호 파일의 일부이다.

그림 28 Morse View로 재생한 비컨 신호 파일 예시

그 결과, 확인한 비컨 신호는 다음과 같이 Hex 데이터로 나타난다.

```
hihi20c288d5007700000960010170609894f187e7e5e75e7e5
```

위의 Hex 값을 FUJI OSCAR 29 CW Telemetry Decoder에 입력하면 FO-29 위성의 상태값을 그림 29와 같이 확인할 수 있다. 이 디코더는 DK3WN이 개발한 프리웨어이다. 따라서 지상국에서 수신한 비컨 신호가 FO-29로부터 수신된 것임을 확인하였고 이를 통해 지상국 장비들의 정상적인 작동을 검증하였다.

비컨 신호 수신 후 진행된 음성신호 송수신 테스트는 마이크를 지상국 트랜시버에 연결하여 사용하였다. 사용하고자 하는 위성의 통신 모드에 맞게
트랜시버의 주파수와 변조방식 등을 설정하고, HRD 를 이용하여 위성과의 통신이 가능할 때 음성을 송신하였다. 수신 시에는 다른 나라의 지상국으로부터 오는 음성신호도 모두 수신되기 때문에 테스트할 때 송신한 음성신호를 잘 구별하여야 한다. 결과적으로 SIGMA 의 지상국으로부터 송신된 음성신호는 FO-29 의 트랜스폰더를 거쳐 성공적으로 다시 지상국에서 수신되었다. 비컨 신호 수신과 마찬가지로 이 결과를 통해 지상국의 장비가 문제 없이 정상 작동 되는 것을 확인할 수 있었다.

그림 29 디코더를 사용하여 비컨 데이터를 분석한 화면
4.3.3 SO-50

SO-50 (Saudi-OSCAR 50, Saudisat-1C)은 사우디아라비아의 위성으로, FM 리피터를 탑재하고 있어 지상국에서의 음성신호 송수신 확인이 가능하다. 표 21은 SO-50에 대한 정보이다.

표 21 SO-50의 사양

<table>
<thead>
<tr>
<th>Name</th>
<th>Saudi-OSCAR 50 (Saudisat-1C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORAD</td>
<td>27607</td>
</tr>
<tr>
<td>COSPAR designation</td>
<td>2002-058-C</td>
</tr>
<tr>
<td>Inclination (degree)</td>
<td>64.56</td>
</tr>
<tr>
<td>RAAN</td>
<td>214.537</td>
</tr>
<tr>
<td>Eccentricity</td>
<td>0.0083184</td>
</tr>
<tr>
<td>ARGP</td>
<td>289.297</td>
</tr>
<tr>
<td>Orbit per day</td>
<td>14.72018183</td>
</tr>
<tr>
<td>Period</td>
<td>97.95 min</td>
</tr>
<tr>
<td>Semi-major axis</td>
<td>7033 km</td>
</tr>
<tr>
<td>Perigee x apogee</td>
<td>603 x 713 km</td>
</tr>
<tr>
<td>Drag factor</td>
<td>0.000302880 1/ER</td>
</tr>
<tr>
<td>Mean anomaly</td>
<td>69.905</td>
</tr>
<tr>
<td>Weight</td>
<td>10 kg</td>
</tr>
<tr>
<td>Frequency</td>
<td>Uplink FM Repeater : 145.850 MHz (FM, 67 Hz PL Tone)</td>
</tr>
<tr>
<td></td>
<td>Downlink FM Repeater : 436.800 MHz (FM)</td>
</tr>
<tr>
<td>Mode</td>
<td>V/U (J) FM Voice Repeater : Operational</td>
</tr>
</tbody>
</table>

SO-50을 사용한 총 4회의 테스트 중 첫 번째 테스트에서는 다른 지상국의 음성신호 수신만 시도하였고, FO-29를 사용한 테스트와 비교하여 상대적으로 음성신호가 깨끗하게 수신되었다. 다운링크 중심주파수인 436.800 MHz를 기준으로 주변 주파수에서 신호를 수신할 수 있었다.
그림 30 은 테스트 당시 HRD 를 통한 위성 통신 가능시간 예측 화면이고
그림 31 은 수신한 음성신호의 파형과 사용 주파수이다.

그림 30 HRD 를 통한 위성 컨택 시간 예측

그림 31 SDR Sharp 을 통한 음성신호 수신 화면
업링크 송신의 경우에는 표 21 에 있는 정보와 같이 트랜시버에서 별도로 Tone 기능을 활성화 시켜야 하고, 다운링크에서는 Tone 기능을 활성화시키지 않아도 신호 수신이 가능하다. 이 테스트 또한 도플러 주파수 편이에 의해 주파수 변화가 있으므로 주파수를 계속 바꾸며 진행하였으며 SDR Sharp 에서 신호가 나타나는 구간을 선택하여 다운링크를 확인하였다. 업링크 주파수에 따라 수신할 수 있는 다운링크 주파수도 변화하였고, 테스트에서 확인한 주파수 범위는 436.793 – 436.804 MHz 이다. 따라서 경희대학교 천문대에 구축된 지상국의 RF 장비와 소프트웨어가 정상적인 기능을 가지고 동작하는 것을 확인 및 검증하였다.
제 5 장. 결론

초소형 과학위성 SIGMA 는 2017 년 1 사분기에 미국 Space X 사의 Falcon 9 에 탑재되어 다른 여러 기의 위성과 함께 발사된다. 현재 SIGMA 의 비행 모델은 2016 년 1 사분기에 개발이 완료되었다. 업링크는 중심주파수 145.210 MHz 로, AFSK 변조방식과 1200 bps 의 데이터 전송속도를 가진다. 다운링크는 중심주파수 435.780 MHz 의 스크램블된 BPSK 변조방식을 사용하고 데이터 전송속도는 9600 bps 이다. SIGMA 의 지상국은 경희대학교 천문대 내에 구축되어 있으며, 지상국 내에서 위성과의 송수신이 모두 가능하다. 업링크는 SIGMA 팀에서 개발한 Commander 를 통해 간단한 동작으로 지상국에서 명령 송신이 가능하다. 다운링크 시에는 FUNcube Dongle 을 연결하여 SDR Sharp 과 Soundmodem 에서 신호를 구별한다. 또한 TMP 를 이용하여 실시간으로 분석된 위성의 상태값 및 측정 데이터를 확인할 수 있다.

큐브위성이 실제 궤도에서 운용되기 전, 본 연구에서는 위성과 지상국 간의 통신 신뢰성 검증을 위하여 링크 해석과 Field 테스트를 수행하였다. 먼저, 링크 해석을 통하여 링크 마진을 계산하였고 그 결과 업링크와 다운링크 모두 3 dB 이상의 여유 있는 마진 값을 도출하였다. 그리고 맵 테스트에서는 실험실 내에서 간단한 송수신 테스트를 수행하여 모든 시도에서 성공적인 결과를 얻었다. 다음으로 Far-field 테스트는 우주 환경에 위성이 노출될 경우 발생할 수 있는 변수를 고려하여 진행되었다. 위성을 Far-field 거리 계산 결과에 따라 지상국으로부터 각각 0.4 km, 8.7 km 떨어진 거리에 위치시키고 지상국과 송수신하였다. 총 네 가지의 테스트 변수 중, 위성의 자세, 안테나 포인팅, 도플러 주파수 편이는 결과에 대한 이슈가 발생하지 않았다. 그러나 자유공간손실을 변수로 두었을 때, 업링크에서 목표로 했던 감쇠 값보다 작은 감쇠 환경에서 통신이 되지 않았다. 이 결과에 대해 지상국 주변 환경이 송신 신호에 영향을 준 것으로 판단하였으며, 우주에서 운용될 때는 지상국 안테나의 양각이 높아질 것이므로 방해 요인이 적을 것으로 판단하였다. 마지막으로 지상국의 장비 검증 테스트에서는 실제 운용중인 OSCAR 위성과의
통신으로 지상 테스트의 한계를 보완하고, 동시에 RF 장비의 기능을 점검하였다.

본 연구는 큐브위성의 통신 테스트를 위한 실질적인 방법과 분석 결과를 시술하였으며, 이로 인해 SIGMA는 지상국과의 통신 신뢰성을 점증하였다. 따라서 발사 후 실제 운용에서도 데이터 송수신에 문제가 없을 것으로 판단된다. SIGMA로부터 탑재체의 측정 값을 성공적으로 수신한다면, 데이터를 이용해 근 지구 자기장과 우주 방사선에 대한 과학적 연구 성과를 기대할 수 있다. 또한 본 연구에서 수행한 테스트 방법은 실제 저비용 큐브위성 제작 시, 통신 시스템을 파악하고 검증하는 단계에 유용한 참고 자료가 될 것으로 기대한다.
참고 문헌

Anil K Maini, Varsha Agrawal, Satellite Technology; Principals and Applications (John Wiley & Sons Ltd, Chichester, 2007)

Homepage for Bryan Klofas, CubeSat Communications System Table, cited 2016 June 15, available from: http://www.klofas.com

Lee HS, Satellite Communication Theory and System (Bogdoo Press, Seoul, 2013)

Maral G, Bousquet M, Satellite Communications Systems; Systems, Techniques and Technology (John Wiley & Sons Ltd, Chichester, 2009)

국립전파연구원, 지구국 국제등록 교육자료 (2013 년 5 월)

국립전파연구원, 지구국 국제등록 교육자료 (2014 년 5 월)

국립전파연구원, 지구국 국제등록 교육자료 (2015 년 6 월)

미래창조과학부, 대한민국 주파수 분배표 (미래부 고시 제 2016-100 호, 2016 년 9 월 30 일)
ABSTRACT

SIGMA (Scientific cubesat with Instruments for Global Magnetic fields and rAdiations) is a 3-U size CubeSat that will be operated in Low Earth Orbit (LEO). The SIGMA communication system uses a Very High Frequency (VHF) band for uplink and an Ultra High Frequency (UHF) band for downlink. Both frequencies belong to an amateur band. The ground station that communicates with SIGMA is located at Kyung Hee Astronomical Observatory (KHAO).

For reliable communication, we carried out a laboratory (lab) test and far-field tests between the CubeSat and a ground station. In the field test, we considered test parameters such as attenuation, CubeSat antenna deployment, CubeSat body attitude, and Doppler frequency shift in transmitting commands and receiving data. In this paper, we present the communication system and a performance test of SIGMA, a link budget analysis. We also compare the link budget with the field test results of transmitting commands and receiving data. In addition, we carried out a verification test of the ground station to check RF equipment.

As a result, it is expected that the reliable communication between SIGMA and the ground station. And we can verify the payloads in a space level and study the near-Earth space environment.
APPENDIX

1. 위성망 국제등록

전파법 및 국제전기통신연합 (ITU) 전파규칙에 따르면, 전파란 “인공적인 유도 없이 공간을 퍼져나가는 3000GHz 이하 주파수의 전자파”이다. 위성과의 통신을 위해서는 주파수와 지구국 등록이 필수로 요구된다. 한정된 위성 궤도와 주파수 확보를 위하여 세계 각국은 치열한 경쟁을 벌이고 있다. 이는 국가적인 무형 자산이므로 국가는 위성망 및 지구국 국제등록을 통해 무선국 주파수 할당의 국제적 인지 및 보호 권리를 확보하여 막대한 경제적 가치 창출이 가능하다.

주파수는 전파규칙에 의거하여 “First come, first served” 원칙에 의해 실질적인 자원이용에 관계된 주관청과의 조정을 통해 획득된다. 또한 국제 규정에 따른 혼신조정 과정을 거쳐 ITU 에 등록하여야만 국제적 보호 권리 확보가 가능하다. 그러나 조정완료 없이 혼신이 발생할 경우 상대 주관청의 요구에 따라 즉시 위성의 운용을 중단하여야 하며, 다른 위성망의 혼신으로부터 보호를 요청할 수 없다.

1.1. 위성망 국제등록 관련법규

위성망의 국제등록을 위해서는 ITU 에서 규정한 전파규칙과 우리나라는 전파법을 참고하여야 한다.

1.1.1. 전파규칙

ITU 헌장 제 4 조에서 업무규칙(Administrative Regulations)으로 국제전기통신규칙(International Telecommunication Regulations)과 전파규칙(Radio Regulation, RR)으로 구분하고 ITU 헌장 및 협약과 동일한 법률문서로 규정하였다. ITU-R 전파규칙은 4 권으로 구성된다.
제 1 권. 조항

9 개의 장으로 구성되어 있으며 주요 내용은 아래와 같다.

- 제 1 장 : 용어 및 기술적 특성 규정
- 제 2 장 : 주파수에 관한 항 규정
- 제 3 장 : 주파수 할당을 위한 주관청 간 조정, 통고 및 등록에 관한 규정,
 절차
- 제 4 장 : 무선국, 산업장비 등으로부터의 간섭, 시험 등에 관한 규정
- 제 5 장 : 무선국 허가, 식별, 호출부호의 할당 및 구성에 관한 규정
- 제 6 장 : 각 업무와 무선국에 관한 규정
- 제 7 장 : 조난 및 안전통신에 관한 규정
- 제 8 장 : 항공업무에 관한 규정
- 제 9 장 : 해상업무에 관한 규정

제 2 권. 부록

전파규칙 제 1 권에 대한 부록 기술

제 3 권. WRC 권고 및 결의

세계전파통신회의에서 채택한 규정 및 ITU-R, 전파통신국, 주관청 등에 대한
요구, 지시, 요청 등의 사항에 관한 결의와 권고사항을 규정

제 4 권. ITU-R 권고 중 전파규칙에 인용되어 강제사항이 된 권고의 모음

전파규칙으로 참조되는 ITU-R 권고서들로 구성되며, 권고서들은 전파규칙과
동등한 지위를 가짐.
1.1.2. 국내 전파법

국내 전파법은 전파의 효율적이고 안전한 이용 및 관리에 관한 사항을 정하여 전파이용과 전파에 관한 기술의 개발을 촉진함으로써 전파 관련 분야의 진흥과 공공복리의 증진에 이바지함을 목적으로 한다.
- 전파법 제 1 조(목적) [개정 2005. 1. 20.]

전파법은 ITU의 전파규칙 (RR)을 근거로 하며, 전파법과 RR의 규정이 서로 다를 경우에는 RR을 우선으로 한다. 전파법은 주로 용어 정의, 전파자원의 확보, 전파자원의 분배와 할당, 전파자원의 이용, 방송국의 허가와 운용, 우주 통신, 전파자원의 보호, 전파진흥, 종사자, 벌칙에 대하여 규정하고 있다.

1.2. 아마추어 무선 주파수 대역

아마추어 무선업무란, 아마추어 즉 전문가가 아닌 사람이 금전상의 이익이 아니고, 전적으로 개인이 무선기술에 흥미를 가지고, 정당하게 허가된 자만이 자신의 훈련·교신 및 기술적 연구를 위해서 하는 무선통신업무를 말한다. 아마추어 무선통신은 국제전기통신조약과 전파법에 의해 규제되며, 사용 가능한 주파수대역이 지정되어 있고, 공중선 전력이 제한되어 있다. 각 아마추어국에는 국적을 표시하는 식별부호 및 숫자와 알파벳의 조합으로 된 호출부호 (Call sign)가 할당되어 있다.
1.2.1. 아마추어 위성 주파수대역

주파수의 업무 분배를 위하여 ITU는 전파규칙에 따라 아래의 그림과 같이 전세계를 3개 지역으로 구분하며, 우리나라는 제3 지역에 속해있다.

주파수 업무 분배를 위한 지역 구분
<table>
<thead>
<tr>
<th>주파수 (MHz)</th>
<th>제 1 지역 (유럽, 아프리카)</th>
<th>제 2 지역 (북, 남미)</th>
<th>제 3 지역 (아시아, 오세아니아)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>1.81 - 2 MHz</td>
<td>1.81 - 2 MHz</td>
<td>1.81 - 2 MHz</td>
</tr>
<tr>
<td>3.5</td>
<td>3.5 - 3.8 MHz</td>
<td>3.5 - 4 MHz</td>
<td>3.5 - 3.9 MHz</td>
</tr>
<tr>
<td>7</td>
<td>7 - 7.3 MHz</td>
<td>7 - 7.3 MHz</td>
<td>7 - 7.1 MHz</td>
</tr>
<tr>
<td>10</td>
<td>10.1 - 10.15 MHz</td>
<td>10.1 - 10.15 MHz</td>
<td>10.1 - 10.15 MHz</td>
</tr>
<tr>
<td>14</td>
<td>14 - 14.35 MHz</td>
<td>14 - 14.35 MHz</td>
<td>14 - 14.35 MHz</td>
</tr>
<tr>
<td>21</td>
<td>21 - 21.45 MHz</td>
<td>21 - 21.45 MHz</td>
<td>21 - 21.45 MHz</td>
</tr>
<tr>
<td>28</td>
<td>28 - 29.7 MHz</td>
<td>28 - 29.7 MHz</td>
<td>28 - 29.7 MHz</td>
</tr>
<tr>
<td>50</td>
<td>50 - 54 MHz</td>
<td>50 - 54 MHz</td>
<td>50 - 54 MHz</td>
</tr>
<tr>
<td>144</td>
<td>144 - 146 MHz</td>
<td>144 - 148 MHz</td>
<td>144 - 148 MHz</td>
</tr>
<tr>
<td>220</td>
<td>220 - 225 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>430</td>
<td>430 - 440 MHz</td>
<td>430 - 440 MHz</td>
<td>430 - 440 MHz</td>
</tr>
<tr>
<td>900</td>
<td>902 - 928 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>1.24 - 1.3 GHz</td>
<td>1.24 - 1.3 GHz</td>
<td>1.24 - 1.3 GHz</td>
</tr>
<tr>
<td>2.3</td>
<td>2.3 - 2.45 GHz</td>
<td>2.3 - 2.45 GHz</td>
<td>2.3 - 2.45 GHz</td>
</tr>
<tr>
<td>3.3</td>
<td>3.3 - 3.5 GHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>5.65 - 5.85 GHz</td>
<td>5.65 - 5.925 GHz</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10 - 10.5 GHz</td>
<td>10 - 10.5 GHz</td>
<td>10 - 10.5 GHz</td>
</tr>
<tr>
<td>47</td>
<td>47 - 47.2 GHz</td>
<td>47 - 47.2 GHz</td>
<td>47 - 47.2 GHz</td>
</tr>
<tr>
<td>75</td>
<td>75.5 - 81 GHz</td>
<td>75.5 - 81 GHz</td>
<td>75.5 - 81 GHz</td>
</tr>
<tr>
<td>142</td>
<td>142 - 149 GHz</td>
<td>142 - 149 GHz</td>
<td>142 - 149 GHz</td>
</tr>
<tr>
<td>241</td>
<td>241 - 250 GHz</td>
<td>241 - 250 GHz</td>
<td>241 - 250 GHz</td>
</tr>
</tbody>
</table>
1.2.2. 우리나라 아마추어 주파수대역

3.5, 7.0, 14.0, 18.068, 21.0, 24.890 MHz 및 144 MHz의 주파수대는 재난구조 통신을 할 수 있다. 2.4, 5.65 GHz 및 24 GHz의 주파수대는 공업, 과학, 의료용 설비 및 기타 설비에 의한 유해한 혼신을 용인하여야 한다.

우리나라 아마추어국 지정주파수

<table>
<thead>
<tr>
<th>지정주파수</th>
<th>운용주파수대</th>
<th>지정주파수</th>
<th>운용주파수대</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,812.5 kHz</td>
<td>1,800 - 1,825</td>
<td>1.28 GHz</td>
<td>1.26 - 1.3</td>
</tr>
<tr>
<td>3,525 kHz</td>
<td>3,500 - 3,800</td>
<td>2.425 GHz</td>
<td>2.4 - 2.45</td>
</tr>
<tr>
<td>3,795 kHz</td>
<td>3,790 - 3,800</td>
<td>3.45 GHz</td>
<td>3.4 - 3.5</td>
</tr>
<tr>
<td>7,050 kHz</td>
<td>7,000 - 7,100</td>
<td>5.75 GHz</td>
<td>5.65 - 5.85</td>
</tr>
<tr>
<td>10,125 kHz</td>
<td>10,100 - 10,150</td>
<td>10.457 GHz</td>
<td>10.45 - 10.5</td>
</tr>
<tr>
<td>14,175 kHz</td>
<td>14,000 - 14,350</td>
<td>24.025 GHz</td>
<td>24 - 24.05</td>
</tr>
<tr>
<td>18,118 kHz</td>
<td>18,068 - 18,168</td>
<td>47.1 GHz</td>
<td>47 - 47.2</td>
</tr>
<tr>
<td>21,225 kHz</td>
<td>21,000 - 21,450</td>
<td>75.75 GHz</td>
<td>75.5 - 76</td>
</tr>
<tr>
<td>24,940 kHz</td>
<td>24,890 - 24,990</td>
<td>77.75 GHz</td>
<td>77.5 - 78</td>
</tr>
<tr>
<td>28,850 kHz</td>
<td>28,000 - 29,700</td>
<td>78.5 GHz</td>
<td>78 - 79</td>
</tr>
<tr>
<td>54 MHz</td>
<td>50 - 54</td>
<td>80 GHz</td>
<td>79 - 81</td>
</tr>
<tr>
<td>145 MHz</td>
<td>144 - 146</td>
<td>135 GHz</td>
<td>134 - 136</td>
</tr>
<tr>
<td>435 MHz</td>
<td>430 - 440</td>
<td>143 GHz</td>
<td>142 - 144</td>
</tr>
<tr>
<td></td>
<td></td>
<td>249 GHz</td>
<td>248 - 250</td>
</tr>
</tbody>
</table>
1.3. 위성망 등록 절차

1.3.1. 국제등록 절차

(비짜획) 위성망 국제등록 절차

1) 사전공표 (API, Advanced Publication Information)
 - 위성을 운용하고자 하는 주관청은 전파규칙 제 9 조의 규정에 따라 운용하고자 하는 위성망의 개략적인 정보를 ITU 에 제출한다. (전파규칙 부록 4 참조)
 - ITU 전파통신사무국 (BR, Bureau)은 제출 자료 검토 후 국제주파수정보회람 (IFIC, International Frequency Information Circular)를 통해 공표한다.
 - 위성망 운용 개시일로부터 7 년전부터 가능한 2 년전까지 제출한다.
 - 주파수대역을 추가하거나 궤도 위치를 6° 이상 변경하는 경우 별도의 사전공표 자료를 다시 제출한다.
- 정지궤도 위성의 경우 사전공표자료 접수일로부터 6 개월 후에 조정절차 개시가 가능하다.
- 비정지궤도 위성의 경우 사전공표자료 공표 후 6 개월 후에 조정절차 없이 통고절차를 개시한다. (일부 상업용 주파수 대역을 이용하는 경우 조정절차 수행)

2) 조정자료 (CR, Coordination Request)
- 정지궤도 위성망과 일부 상업용 주파수를 사용하는 비정지궤도 위성망에 대한 구체적인 정보를 ITU에 제출한다. (전파규칙 부록 4 참조)
- ITU BR은 제출 자료 심사 후 신청 위성망과 조정이 필요한 위성망 정보를 수록하여 IFIC를 통해 공표한다.
- 사전공표자료 제출일로부터 6 개월 이후부터 제출 가능하며 사전공표자료 제출 후 24 개월 이내에 조정자료를 제출하지 않을 경우 규정에 따라 이전에 제출한 사전공표자료는 삭제한다.
- 조정자료 접수일은 위성망 조정시 상호 위성망간 조정 우선권을 판단하는 기준이 된다.

3) 통고자료 (Part I, II, III, Notification)
- 전파규칙 제 11 조에 따라 국제주파수등록원부 (MIFR, Master International Frequency Register)에 등재하기 위하여 ITU에 제출 (전파규칙 부록 4 참조)
- 위성망 운용 3 개월 이전에 제출하여야 하며 사전공표자료 접수일로부터 7 년까지 통고자료 미제출시 이전에 제출한 사전, 조정자료는 삭제한다. (단, 조정절차를 수행하지 않는 위성망은 사전공표자료 제출 후 6 개월 이후부터 7 년 이내에 제출 가능)
- 통고자료의 분류

Part I : 주관청이 제출한 통고자료를 BR이 접수했음을 알리는 공표자료
Part II : 주관청이 제출한 통고자료가 MIFR에 등재되었음을 알리는 공표자료
Part III: 주관청이 제출한 통고자료가 BR의 심사 시 오류 발생으로 주관청에 반송된 공표자료

4) 행정적 이행정보 자료 (DDI, Due Diligence Information)
- ITU 전파규칙 결의 49에 따라 제출한다.
- 실질적 위성사용 계획이 없는 위성망 (Paper Satellite) 방지를 위해 위성의 발사정보 등을 BR에 제출하게 하고 있으며, 기한 내에 DDI를 제출하지 않을 경우 위성망 국제등록 자료는 삭제된다.
- 사전공표자료 접수일로부터 7년 이내에 제출하여야 한다.
- 제출 대상: 정지 및 비정지궤도를 이용하여 방송위성, 고정위성, 이동위성 서비스를 제공하는 위성망
- 제출 정보
위성제작회사 정보: 제작사명, 계약발효일, delivery window, 구매 위성수 등
위성발사회사 정보: 발사회사명, 계약발효일, 발사예정일, 발사체명, 장소 등

5) 비용부담 (Cost Recovery)
- ITU 이사회 결정 482에 따라 위성망 국제등록 비용을 납부하여야 한다.
- 비용부과 방법: 기본비용 + 추가비용(주파수 및 무선국 수 등을 고려)
- 비용면제 위성망: 매년 각 주관청별로 1개 위성망에 대하여 비용면제, 아마추어 위성망에 대하여 비용면제
1.3.2. 국제등록 국내절차

요청자/활당받은자 → 미래창조과학부 → 국제전기통신연합(ITU)

위성망 국제등록 신청
(사전공표자료 제출)

위성망 조정자료 제출

혼신 조정

통고서 제출

신청서 ITU 송부

- 주파수 할당 지정 가능성
- 사업계획의 적정성
- 혼신 조정 능력

조정자료 ITU 송부

방부

비용 부과 고지

통고서 ITU 송부

방부

비용 부과 고지

조정자료 공표

통고서 공표/비용 부과

통고서 심사/동재

위성망 국제등록 국내절차
1.4. BR Software의 사용

국제등록자료의 작성을 위해서는 ITU 에서 제공하는 프로그램(BR Software)을 사용하며, 2013년 1월 1일 이후부터는 BR Software Version 7.0 이상을 사용해야 한다.

1.4.1. BR Software 개요

다음은 국제등록 신청서 작성에 필요한 주요 소프트웨어이다.

- SpaceCap: 위성망/지구국 제원의 갈무리 (Capture)
- SpaceVal: 입력 제원의 검증 (Validation)
- SpaceQry: 검증 결과 보고서 검토 (Query and exact systems)
- SpacePub: 세부 정보 출력 (Publication)
- SpaceCom: 신규 위성망에 대한 이의제기 (Comment)
- AP7Capture: 지구국 전용 제원 입력
- GIBC: 지구국 조정영역도 설정 (Graphical Interface for Batch Calculations)
1.4.2. 설치 방법

- ITU 홈페이지 (www.itu.int) 접속
- 메뉴 중 Radiocommunication → Databases & e-Services → Space Services Software → Online database

ITU 홈페이지의 BR Software 다운로드 관련 페이지
2. 무선국 국내등록

무선국은 전파를 보내거나 받는 전기적 설비인 ‘무선설비’와 무선설비를 조작하거나 무선설비의 설치 공사를 하는 자로서 국가기술자격증을 교부 받은 자인 ‘무선종사자’를 일컫는다. 위성의 주파수 국제등록 외에, 위성과 지상국은 각각 우주국과 지구국으로 국내 지역별 해당 전파관리소에 등록절차를 거쳐야 한다.

2.1. 무선국허가 실무

무선국은 고정국, 육상국, 해안국, 기지국, 이동중계국, 지구국 등 41 개로 분류한다 (시행령 제 29 조). 무선국의 국종은 통신망의 구성에 따라 결정되며 그 중, 아마추어 주파수를 사용하는 위성인 SIGMA 는 우주국, SIGMA 의 지상국은 일반지구국에 해당된다.

· 우주국 (국종번호 71)

- 우주공간의 우주국 또는 우주국과 지구국간에 과학, 기상, 항법, 관측통신에 사용할 목적으로 미래창조과학부 장관이 정하여 고시한 기준에 적합한 무선국

- 운용사례: 우주국과 지구국, 우주국과 우주국 상호간의 통신으로 전세계 통신, 방송망 구성, 지구탐사, 기상측정, 군사 목적 등 다양한 용도로 운용

- 운용제원: 전파지정기준 참조 (주파수, 전력, 전파형식 등)

· 일반지구국 (국종번호 80)

- 육상의 특정한 지점에 개설하여 전파를 주기적으로 위성에 송출하여 육상에 개설된 지구국과 사용할 목적으로 미래창조과학부 장관이 정하여 고시한 기준에 적합한 무선국
운용사례: 지구국(육상)과 우주국을 통한 지구국 상호간 통신을 목적으로 구성하여 TV 방송, 통신 중계 등 다양한 역무 제공

운용계원: 전파지정기준 참조 (주파수, 전력, 전파형식 등)

2.1.1. 무선국 허가 처리 절차

무선국 허가 업무 처리 흐름도는 다음의 그림과 같다. 관할 지역 전파관리소에 직접 서류를 제출하거나, 미래창조과학부 전자민원센터의 무선국 허가신청 민원을 통하여 웹 상에서 접수 및 서류 제출이 가능하다.

업무 처리 흐름도
2.1.2. 무선국 허가 신청

- 무선국 허가신청 단위 (시행령 제 30 조)

 - 무선국 분류에 따라 송신설비의 설치장소 (공중선 설치 위치) 별로 함

 - 이동하는 무선국 중 아마추어국과 송수신 장치마다 신청하는 것이 불합리하다고 인정되는 무선국은 2 개 이상의 송신장치를 포함하여 단일 무선국으로 신청 가능

- 무선국 허가신청 제출서류 (시행령 제 31 조)

 - 무선국 허가신청서

 - 법인등기부등본 (법인인 경우에 한함)

 - 무선설비의 시설개요서

 - 공사설계서 (공중선계도면, 기기배치도)

2.1.3. 결격사유 (전파법 제 20 조)

다음에 해당하는 자는 무선국을 개설할 수 없다. 다만, 허가 받은 것으로 보는 무선국이나, 발사하는 전파가 미약하거나 설치공사를 할 필요가 없는 무선국, 신고하지 않고 개설하는 무선국의 경우에는 이에 해당하지 않는다.

- 반사회적 성격의 배제

 - 전파법에서 규정한 죄를 범하여 금고 이상의 실형 선고를 받고 그 집행이 종료되거나 집행받지 아니하기로 확정된 날부터 2 년을 경과하지 아니한 자

 - 전파법에서 규정한 죄를 범하여 금고 이상의 집행유예 선고를 받고 그 유예기간 중에 있는 자
무선국 개설허가의 취소나 개설 신고된 무선국의 폐지 명령을 받고 그 사유가 없어지지 아니한 자 (전파사용료 미납 등)

· 외국성의 배제

대한민국의 국적을 가지지 아니한 자

· 외국정부 또는 그 대표자, 외국의 법인 또는 단체

· 외국성 배제의 예외

실험국 (과학 또는 기술개발을 위한 실험에 전용하는 무선국)

선박안전법 제 29 조의 규정에 의한 선박의 무선국

항공법 제 145 조 단서 및 제 148 조에 따른 허가를 받아 국내항공에 사용되는 항공기의 무선국

내에서 열리는 국제적 또는 국가적인 행사를 위하여 필요한 경우 그 기간에만 사용하도록 미래창조과학부장관이 허용하는 무선국

아마추어국으로서 대한민국의 아마추어무선기사 자격을 취득한 자

자국에서 아마추어무선기사 자격을 취득한 자가 대한민국에 일시 체류하는 기간 중에 무선국을 운용하고자 하는 자로서 한국아마추어무선연맹의 추천을 받은 자

· 반국가적 성격의 배제

형법 중 내란·외환의 죄를 범하여 유죄선고를 받은 자

군형법 중 이적의 죄를 범하여 유죄선고를 받은 자

국가보안법 위반의 죄를 범하여 유죄선고를 받은 자
2.2. 지구국 허가 관련

• 적부심사

- 신청인이 무선국 개설 신청시 무선국 허가신청서 등 관련 서류를 검토. 기존 또는 유사한 통신망이나 동일목적의 통신망이 있을 경우 통합가능여부 또는 별도 개설의 필요성이 있는지 구체적으로 검토

• 무선종사자 배치기준

- 지구국의 무선종사자의 자격. 정원배치기준 (제 117조 제 1항 제 2호 관련)

해안지구국	전파전자통신기사 또는 무선설비기사 1명, 전파전자통신산업기사 또는 무선설비산업기사 1명, 전파전자통신기술사 또는 무선설비기술사 1명
지구국 (공중선의 직경이 3 m 이상으로서 휘더링크(Feeder Link)를 구성하는 것에 한한다)	무선설비기사 1명, 무선설비산업기사 1명, 무선설비기술사 1명
그 밖의 지구국 (미래창조과학부장관이 따로 정하여 고시하는 소형지구국은 제외한다)	무선설비기술사 1명

- 무선종사자를 선임하지 않아도 되는 지구국

차량 또는 휴대용의 지구국: 인마세트 단말 지구국, 공중선의 직경이 3 m 미만인 지구국)

초소구경 위성지구국 (VSAT; Very Aperture Satellite Earth Station): 공중선 직경이 3 m 미만으로서 송수신 및 제어기능이 중앙집중통신방식, 국내 통신용 일 것
지구국 호출명칭 (부호) 부여

우주국 및 지구국 호출부호

<table>
<thead>
<tr>
<th>지소</th>
<th>우주국</th>
<th>전기통신역무용 지구국</th>
<th>선박지구국 및 항공기지구국</th>
<th>기타 지구국</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>국제역무</td>
<td>국내역무</td>
<td></td>
</tr>
<tr>
<td>서울지소</td>
<td>DS20 – DS99(50)</td>
<td>HL20 – HL59(40)</td>
<td>6K200 – 6K299(100)</td>
<td>DT20 – DT349(150)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>부산지소</td>
<td>6K20 – 6K29(10)</td>
<td>DT350 – DT449(100)</td>
<td>6K400 – 6K999(50)/</td>
<td>HL300 – HL849(550)/</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>80 개</th>
<th>140 개</th>
<th>1,000 개</th>
<th>2,700 개</th>
<th>4,300 개</th>
</tr>
</thead>
</table>

80
감사의 글

논문을 끝까지 마칠 수 있도록 그 동안 천문대에서 대학원 생활을 하는 데에 도움 주신 많은 분들에게 감사드립니다. 학부 생부터 시작하여 대학원 입학 후 석사 생활 동안 저를 지도해주신 진호 교수님, 존경하고 감사드립니다. 교수님의 가르침으로 인하여 학문뿐만 아니라 사회 생활에서도 많은 것을 배울 수 있었습니다. 항상 조언과 격려의 말씀 해주신 김관혁 교수님, 선종호 교수님 감사드립니다. 위성 통신 관련하여 질문 드릴 때마다 많은 도움 주신 채규성 박사님 감사드립니다. 그리고 김갑성 교수님, 김상준 교수님, 김성수 교수님, 문용재 교수님, 박수종 교수님, 이동훈 교수님, 이은상 교수님, 이정은 교수님, 장민환 교수님, 최광선 교수님, Tetsuya Magara 교수님 감사드립니다.

대학원 생활의 대부분을 차지한 SIGMA 와 같이 일했던 연구실 팀원들 정말 감사드립니다. 위성 통신 분야에 대해 세세하게 알려주시고 SIGMA 통신파트에서 같이 고생했던 효정언니, 대학원 생활 하는 데 많은 도움주신 정규오빠, 항상 유머 넘치는 성환오빠, 남극에서 돌아오고 있음을 재해오빠, 끝까지 신경 써주신 정호오빠 감사드립니다. 항상 생일파티를 함께했던 3 연구실 분들, 앞으로 대학원 생활을 시작할 만규오빠와 승아에게도 감사드립니다.

마지막 1 년을 함께한 제 31 대 일반대학원 총학생회 분들께도 감사드립니다. 든든한 선배이자 회장님 영석오빠, 항상 멋있는 부회장님 희정언니, 힘들 때마다 저에게 좋은 말씀 해주시고 응원해주신 다운언니, 은정언니, 재형오빠, 항상 활기찬 성임언니, 은선언니, 희진오빠, 티격태격하던 길호, 윤정이, 많이 못 봤던 아쉬운 건주오빠, 성우오빠, 정훈오빠, 연경언니, 삼하오빠, 세영오빠 모두 감사드립니다.

대학교 생활을 함께했던 우리 11 학번 동기들, 학교는 다르지만 같이 대학원 다니며 서로 의지했던 영운이, 항상 응원해주는 수연이, 민선언니, 정현오빠, 경찬오빠, 동영오빠, 주훈오빠, 육오빠 감사드립니다. 논문을 마치기까지
응원해주시고 배려해주신 한국해양과학기술원 해양위성센터 연구원 분들께도 정말 감사드립니다.

마지막으로 언제나 저를 믿어주시고 비험복이 되어준 사랑하는 아빠, 엄마, 결이에게 감사드립니다. 앞으로 더욱 발전하는 사람이 되겠습니다. 감사합니다.

2016년 12월
정선영